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Abstract
Many emerging applications such as IoT, wearables, im-
plantables, and sensor networks are power- and energy-
constrained. These applications rely on ultra-low-power pro-
cessors that have rapidly become the most abundant type of
processor manufactured today. In the ultra-low-power embed-
ded systems used by these applications, peak power and en-
ergy requirements are the primary factors that determine criti-
cal system characteristics, such as size, weight, cost, and life-
time. While the power and energy requirements of these sys-
tems tend to be application-specific, conventional techniques
for rating peak power and energy cannot accurately bound the
power and energy requirements of an application running on
a processor, leading to over-provisioning that increases sys-
tem size and weight. In this paper, we present an automated
technique that performs hardware-software co-analysis of the
application and ultra-low-power processor in an embedded
system to determine application-specific peak power and en-
ergy requirements. Our technique provides more accurate,
tighter bounds than conventional techniques for determining
peak power and energy requirements, reporting 15% lower
peak power and 17% lower peak energy, on average, than a
conventional approach based on profiling and guardbanding.
Compared to an aggressive stressmark-based approach, our
technique reports power and energy bounds that are 26% and
26% lower, respectively, on average. Also, unlike conven-
tional approaches, our technique reports guaranteed bounds
on peak power and energy independent of an application’s
input set. Tighter bounds on peak power and energy can be
exploited to reduce system size, weight, and cost.

1. Introduction
Ultra-low-power (ULP) processors have rapidly become the
most abundant type of processor in production today. New and
emerging power- and energy-constrained applications such as
the internet-of-things (IoT), wearables, implantables, and sen-
sor networks have already caused production of ULP proces-
sors to exceed that of personal computers and mobile proces-
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Figure 1: ULP systems are commonly powered by energy
harvesting, battery, or a combination of the two, where har-
vesters are used to charge the battery.

sors [6]. The 2015 ITRS report projects that these applications
will continue to rely on simple single-core ultra-low-power
processors in the future, will be powered by batteries and en-
ergy harvesting, and will have even tighter peak power and en-
ergy constraints than the power- and energy-constrained ULP
systems of today [2]. Unsurprisingly, low-power microcon-
trollers and microprocessors are projected to continue being
the most widely-used type of processor in the future [? ].

ULP systems can be classified into three types based on the
way they are powered [12]. As illustrated in Figure 1, some
ULP systems are powered directly by energy harvesting (Type
1), while some are battery-powered (Type 3). Another variant
is powered by a battery and uses energy harvesting to charge
the battery (Type 2).

For each of the above classes, the size of energy harvest-
ing and/or storage components determine the form factor,
size, and weight. Consider, for example, the wireless sensor
node shown in Figure 2 [23]. The two largest system com-
ponents that predominantly determine the overall system size
and weight are the energy harvester (solar cell) and the battery.

Going one step further, since the energy harvesting and
storage requirements of a ULP system are determined by its
power and energy requirements, the peak power and energy
requirements of a ULP system are the primary factors that
determine critical system characteristics such as size, weight,
cost, and lifetime [12]. In Type 1 systems, peak power is
the primary constraint that determines system size, since the
power delivered by harvesters is proportional to their size. In
these systems, harvesters must be sized to provide enough
power, even under peak load conditions. In Type 3 systems,
peak power largely determines battery life, since it determines
the effective battery capacity [9]. As the rate of discharge
increases, effective battery capacity drops [9, 17]. This effect
is particularly pronounced in ULP systems, where near-peak



Figure 2: In most ULP systems, like this wireless sensor
node, the size of the battery and/or energy harvester dominates
the total system size.

Figure 3: Harvester and battery size calculations for Type
1, 2, and 3 ULP systems depend on peak power and energy
requirements.

power is consumed for a short period of time, followed by a
much longer period of low-power sleep, since pulsed loads
with high peak current reduce effective capacity even more
drastically than sustained current draw [17].

In Type 2 and 3 systems, the peak energy requirement mat-
ters as well. For example, energy harvesters in Type 2 sys-
tems must be able to harvest more energy than the system
consumes, on average. Similarly, battery life and effective ca-
pacity are dependent on energy consumption (i.e., average
power) [17]. Figure 3 summarizes how peak power and en-
ergy requirements impact sizing parameters for the different
classes of ULP systems.

Finally, Tables 1 and 2 list the energy and power densi-
ties for different types of batteries and energy harvesters, re-
spectively. These data provide a rough sense of how size and
weight of a ULP system scale based on peak energy and power
requirements. A tighter bound on the peak power and energy
requirements of a ULP system can result in a roughly propor-
tional reduction in size and weight.
How are Peak Power and Energy Determined Today?
There are several possible approaches to determine the peak
power and energy requirements of a ULP processor (Fig-
ure 4).1 The most conservative approach involves using the
processor design specifications provided in data sheets. These

1Peak power and energy are sometimes referred to as worst-case power
and energy.

Table 1: Specific energy and energy density for different
battery types [4].

Battery Specific Energy Energy Density
Type [J/g] [MJ/L]
Li-ion 460 1.152

Alkaline 400 0.331

Carbon-zinc 130 1.080

Ni-MH 340 0.504

Ni-cad 140 0.828

Lead-acid 146 0.360

Table 2: Power density for different types of energy har-
vesters. [33]

Harvester type Power Density
Photovoltaic (sun) 100 mW/cm2

Photovoltaic (indoor) 100 µW/cm2

Thermoelectric 60 µW/cm2

Ambient airflow 1 mW/cm2

Figure 4: The conventional methodology for sizing energy
harvesting and storage components involves determining peak
power and energy requirements for a processor and selecting
components that will provide enough power and energy to
satisfy the requirements over the lifetime of the system.

specifications characterize the peak power that can be con-
sumed by the hardware at a given operating point and can be
directly translated into a bound on peak power. This bound
is conservative because it is not application-specific; however,
it is safe for any application that might be executed on the
hardware. A more aggressive technique for determining peak
power or energy requirements is to use a peak power or energy
stressmark. A stressmark is an application that attempts to ac-
tivate the hardware in a way that maximizes peak power or
energy. A stressmark may be less conservative than a design
specification, since it may not be possible for an application to
exercise all parts of the hardware at once. The most aggressive
conventional technique for determining peak power or energy
of a ULP processor is to perform application profiling on the
processor by measuring power consumption while running the
target application on the hardware. However, since profiling
is performed with specific input sets under specific operating
conditions, peak power or energy bounds determined by pro-
filing might be exceeded during operation if application inputs
or system operating conditions are different than during pro-
filing. To ensure that the processor operates within its peak
power and energy bounds, a guardband is applied to profiling-
based results.
Our Proposal: Determining Application-specific Peak Power
and Energy Requirements
Most ULP embedded systems run the same application or
computation over and over in a compute / sleep cycle for the
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Figure 5: Different applications can have different activity
profiles, resulting in peak power and energy requirements that
are application-specific.

entire lifetime of the system [1]. As such, the power and en-
ergy requirements of embedded ULP processors tend to be
application-specific. This is not surprising, considering that
different applications exercise different hardware components
at different times, generating different application-specific
loads and power profiles. For example, Figures 5a and 5b
show the active (toggling) gates for two different applica-
tions (tHold and PI – see Table 3) during the cycles in which
peak power is expended for each application. These figures
were generated by running gate-level simulations of the ap-
plications on openMSP430 [18] and marking all gates that
toggled in the cycle in which each benchmark expended its
peak power. The figures show that PI exercises a larger frac-
tion of the processor than tHold at its peak, leading to higher
peak power. However, while the peak power and energy re-
quirements of ULP processors tend to be application-specific,
many conventional techniques for determining peak power
and energy requirements for a processor are not application-
specific (e.g., design-based and stressmark-based techniques).
Even in the case of a profiling-based technique, guardbands
must be used to inflate the peak power requirements observed
during profiling, since it is not possible to generate bounds
that are guaranteed for all possible input sets. These limita-
tions prevent existing techniques from accurately bounding
the power and energy requirements of an application running
on a processor, leading to over-provisioning that increases
system size and weight.

In this paper, we present a novel technique that deter-
mines application-specific peak power and energy require-
ments based on hardware-software co-analysis of the appli-
cation and ultra-low-power processor in an embedded system.
Our technique performs a symbolic simulation of an applica-
tion on the processor netlist in which unknown logic values
(Xs) are propagated for application inputs.2 This allows us to
identify gates that are guaranteed to not be exercised by the
application for any input. This, in turn, allows us to bound the
peak power and energy requirements for the application. The
peak power and energy requirements generated by our tech-
nique are guaranteed to be safe for all possible inputs and op-
erating conditions. Our technique is fully automated and pro-
vides more accurate, tighter bounds than conventional tech-
niques for determining peak power and energy requirements.
Our paper makes the following contributions.

2Peak power and energy analyses can be offered as a cloud compilation
service by the hardware system vendor in settings where the application
developer does not have access to the processor description [5, 14, 22].

Figure 6: The test setup used to measure peak and average
power on a ULP processor (MSP430).

•We present an automated technique based on symbolic sim-
ulation that takes an embedded system’s application software
and processor netlist as inputs and determines application-
specific peak power and energy requirements for the proces-
sor that are guaranteed to be valid for all possible application
inputs and operating conditions. This is the first approach to
use symbolic simulation to determine peak power and energy
requirements for an application running on a processor.
• We show that the application-specific peak power and en-
ergy requirements determined by our technique are more ac-
curate, and therefore less conservative, than those determined
by conventional techniques. On average, the peak power re-
quirements generated by our technique are 27%, 26%, and
15% lower than those generated based on design specifica-
tions, a stressmark, and profiling, respectively, and the peak
energy requirements generated by our technique are 47%,
26%, and 17% lower. Reduction in the peak power and energy
requirements of a ULP processor can be leveraged to improve
critical system metrics such as size and weight.
• Our technique can be used to guide optimizations that target
and reduce the peak power of a processor. Optimizations sug-
gested by our technique reduce peak power by up to 10% for
a set of embedded applications.

2. A Case for Application-specific
Input-independent Peak Power and Energy
Requirements

We measured peak power consumption for a sample set of
ULP benchmark applications (see Table 3) running on an
MSP430F1610 processor.3 Benchmark applications were run
repeatedly with different inputs at an operating frequency of 8
MHz while sampling the voltage and current of the processor
at a rate of 10 MHz using an InfiniiVision DSO-X 2024A
oscilloscope, to ensure at least one sample per cycle. Power
is calculated as the product of voltage and current. Figure 6
shows our test setup.

Figure 7a compares the peak power observed for different
applications. The results show that peak power can be differ-
ent for different applications. Thus, peak power bounds that
are not application-specific will overestimate the peak power

3MSP430 is one of the most popular processors used in ULP systems [7,
43].
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Figure 7: The peak power and normalized peak energy (nor-
malized to an application’s runtime in cycles) of a ULP pro-
cessor are different for different applications and different in-
puts. The bars represent average across all inputs; error bars
show the range of input-induced peak and average power vari-
ations. Measured variation between multiple runs of the same
application and same input is less than 2%.

requirements of applications, leading to over-provisioning of
energy harvesting and storage components that determine sys-
tem size and weight. Figure 7a also shows that the peak power
requirements of applications are significantly lower than the
rated peak power of the chip (4.8 mW), so using design spec-
ifications to determine peak power requirements can lead to
significant over-provisioning and inefficiency. The figure also
confirms that peak power of an application depends on appli-
cation inputs and can vary significantly for different inputs.
This means that profiling cannot be relied on to accurately de-
termine the peak power requirement for a processor, since not
all input combinations can be profiled, and the peak power for
an unprofiled input could be significantly higher than the peak
power observed during profiling. Since input-induced varia-
tions change peak power by over 25% for these applications
(Figure 7a), a profiling-based approach for determining peak
power requirements should apply a guardband of at least 25%
to the peak power observed during profiling.

For energy-constrained ULP systems, like those powered
by batteries (Type 2 and 3), peak energy as well as peak power
determines the size of energy harvesting and storage compo-
nents (Section 1). Thus, it is also important to determine an
accurate bound on the peak energy requirements of a ULP
processor. Figure 8 shows the instantaneous power profile for
an application (mult), demonstrating that on average, instan-
taneous power can be significantly lower than peak power.
Therefore, we can more accurately determine the optimal siz-
ing of components in an energy-constrained system by gener-
ating an accurate bound on peak energy, rather than conserva-
tively multiplying peak power by execution time.

Figure 7b characterizes the peak energy, normalized to ap-
plication runtime in cycles, for different applications and input
sets, showing that the maximum rate at which an application
can consume energy is also application- and input-dependent.
Therefore, conventional techniques for determining the peak
energy requirements of a ULP processor have the same limita-
tions as conventional techniques for determining peak power
requirements. In both cases, the limitations of conventional
techniques require over-provisioning that can substantially in-
crease system size and weight.
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Figure 8: Measured instantaneous power of MSP430F1610
for the mult benchmark is significantly lower, on average,
than both the rated and observed peak power for the appli-
cation.
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Figure 9: Our technique performs input-independent activity
analysis that enables determination of accurate peak power
and energy requirements for a ULP processor.

In the next section, we describe a novel technique for
determining the peak power and peak energy requirements
of a ULP processor that is application-specific yet also input-
independent.

3. Application-Specific Input-indep-endent
Peak Power and Energy

Figure 9 provides an overview of our technique for determin-
ing application-specific peak power and energy requirements
that are input-independent. The inputs to our technique are
the application binary that runs on a ULP processor and the
gate-level netlist of the ULP processor. The first phase of our
technique, described in Section 3.1, is an activity analysis that
uses symbolic simulation to efficiently characterize all possi-
ble gates that can be exercised for all possible execution paths
of the application and all possible inputs. This analysis also
reveals which gates can never be exercised by the application.
Based on this analysis, we perform input-independent peak
power (Section 3.2) and energy (Section 3.3) calculations to
determine the peak power and energy requirements for a ULP
processor.

3.1 Input-Independent Gate Activity Analysis
Since the peak power and energy requirements of an applica-
tion can vary based on application inputs, a technique that de-
termines application-specific peak power requirements must
bound peak power for all possible inputs. Exhaustive profil-
ing for all possible inputs is not possible for most applications,
so we have created a novel approach for activity analysis that
uses unknown logic values (Xs) for inputs to efficiently char-
acterize activity for all possible inputs with minimum simula-
tion effort.

Our technique, described in Algorithm 1, is based on sym-
bolic simulation [8] of an application binary running on the
gate-level netlist of a processor, in which Xs are propagated



for all signal values that cannot be constrained based on the
application. When the simulation begins, the states of all gates
and memory locations that are not explicitly loaded with the
binary are initialized to Xs. During simulation, all input val-
ues are replaced with Xs by our simulator. As simulation pro-
gresses, the simulator dynamically constructs an execution
tree describing all possible execution paths through the appli-
cation. If an X symbol propagates to the inputs of the program
counter (PC) during simulation, indicating an input-dependent
control sequence, a branch is created in the execution tree.
Normally, the simulator pushes the state corresponding to one
execution path onto a stack for later analysis and continues
down the other path. However, a path is not pushed to the
stack or re-simulated if it has already been simulated (i.e., if
the simulator has seen the branch (PC) before and the proces-
sor state is the same as it was when the branch was previously
encountered). This allows Algorithm 1 to analyze programs
with input-dependent loops. When simulation down one path
reaches the end of the application, an un-simulated state is
loaded from the last input-dependent branch in depth-first or-
der, and simulation continues. When all execution paths have
been simulated to the end of the application (i.e., depth-first
traversal of the control flow graph terminates), activity analy-
sis is complete.4

Algorithm 1 Input-independent Gate Activity Analysis
1. Procedure Create Symbolic Execution Tree(app binary, design netlist)
2. Initialize all memory cells and all gates in design netlist to X
3. Load app binary into program memory
4. Propagate reset signal
5. s← State at start of app binary
6. Symbolic Execution Tree T .set root(s)
7. Stack of un-processed execution paths, U .push(s)
8. while U != ∅ do
9. e← U .pop()

10. while e.PC next != X and !e.END do
11. e.set inputs X() // set all peripheral port inputs to Xs
12. e′ ← propagate gate values(e) // simulate this cycle
13. e.annotate gate activity(e,e′) // annotate activity in tree
14. e.add next state(e′) // add to execution tree
15. e← e′ // process next cycle
16. end while
17. if e.PC next == X then
18. for all a ∈ possible PC next vals(e) do
19. if a /∈ T then
20. e′ ← e.update PC next(a)
21. U .push(e′)
22. T .insert(a)
23. end if
24. end for
25. end if
26. end while

During symbolic simulation, the simulator captures the
activity of each gate at each point in the execution tree. A gate
is considered active if its value changes or if it has an unknown
value (X) and is driven by an active gate; otherwise, the
gate is idle. The resulting annotated symbolic execution tree
describes all possible instances in which a gate could possibly
toggle for all possible executions of the application binary.
As such, a gate that is not marked as toggled at a particular
location in the execution tree can never toggle at that location
in the application. As described in the next sections, we can

4Complex applications and processors might require heuristics for explo-
ration of a large number of execution paths [10, 19]; however, our approach
is adequate for ULP systems, which tend to have simple processors and ap-
plications. For example, complete analysis of our most complex benchmark
takes 2 hours.

use the information gathered during activity analysis to bound
the peak power and energy requirements of an application.

3.2 Input-Independent Peak Power Requirements
The input to the second phase of our technique is the sym-
bolic execution tree generated by input-independent gate ac-
tivity analysis. Algorithm 2 describes how to use the activity-
annotated execution tree to generate peak power requirements
for a ULP processor, application pair.

Algorithm 2 Input-independent Peak Power Computation
1. Procedure Calculate Peak Power
2. {E—O} VCD ← Open {Even—Odd} VCD File // maximizes peak power in

even—odd cycles
3. T← flatten(Execution Tree) // create a flattened execution trace that represents the

execution tree
4. for all {even—odd} cycles c ∈ T do
5. for all toggled gates g ∈ c do
6. if value(g,c) == X && value(g,c-1) == X then
7. value(g,c-1)← maxTransition(g,1) // returns the value of the gate in the

first cycle of the gate’s maximum power transition
8. value(g,c) ← maxTransition(g,2) // returns the value of the gate in the

second cycle of the gate’s maximum power transition
9. else if value(g,c) == X then

10. value(g,c)← !value(g,c-1)
11. else if value(g,c-1) == X then
12. value(g,c-1)← !value(g,c)
13. end if
14. end for
15. {E—O} VCD← value(*,c-1)
16. {E—O} VCD← value(*,c)
17. end for
18. Perform power analysis using E VCD and O VCD to generate even and odd power

traces, PE and PO

19. Interleave even cycle power from PE with odd cycle power from PO to form peak
power trace, Ppeak

20. peak power← max(Ppeak)

The first step in determining peak power from an execution
tree produced during gate activity analysis is to concatenate
the execution paths in the execution tree into a single execu-
tion trace. We use a value change dump (VCD) file to record
the gate-level activity in the execution trace. The execution
trace contains Xs, and the goal of the peak power computation
is to assign values to the Xs in the way that maximizes power
for each cycle in the execution trace. The power of a gate in a
particular cycle is maximized when the gate transitions (tog-
gles). Since a transition involves two cycles, maximizing dy-
namic power in a particular cycle, c, of the execution trace
involves assigning values to any Xs in the activity profiles of
the current and previous cycles, c and c − 1, to maximize the
number of transitions in cycle c.

The number and power of transitions are maximized as fol-
lows. When the output value of a gate in only one of the cy-
cles, c or c − 1, is an X, the X is assigned the value that as-
sumes that a transition happened in cycle c. When both values
are Xs, the values are assigned to produce the transition that
maximizes power in cycle c. The maximum power transition
is found by a look-up into the standard cell library for the
gate. Since constraining Xs in two consecutive cycles to max-
imize power in the second cycle may not maximize power in
the first cycle, we produce two separate VCD files – one that
maximizes power in all even cycles and one the maximizes
power in all odd cycles. To find the peak power of the applica-
tion, we first run activity-based power analysis on the design
using the even and odd VCD files to generate even and odd
power traces. We then form a peak power trace by interleav-
ing the power values from the even cycles in the even power



1 2 3 4 5 6 7 8 9
g1 0 0 1 X X X 0 0 0
g2 0 X X X X X X 0 0
g3 0 0 0 1 X X X X 0

1 2 3 4 5 6 7 8 9
g1 0 0 1 0 0 1 1 0 0
g2 0 1 0 1 0 1 1 0 0
g3 0 0 0 1 0 1 0 1 0

1 2 3 4 5 6 7 8 9
g1 0 0 1 0 1 1 0 0 0
g2 0 0 1 0 1 0 1 0 0
g3 0 0 0 1 0 0 1 1 0

Figure 10: To determine a bound on peak power, we generate
two different activity profiles – one that maximizes power in
even cycles (left) and one that maximizes power in odd cycles
(right).

trace and the odd cycles in the odd power trace. This peak
power trace bounds the peak power that is possible in every
cycle of the execution trace. The peak power requirement of
the application is the maximum per-cycle power value found
in the peak power trace.5

Our VCD generation technique is illustrated in Figure 10.
We use the example of three gates with overlapping Xs that
need to be assigned to maximize power in every cycle. We
show two assignments – one that maximize peak power in all
even cycles (left), and one that maximizes peak power in all
odd cycles (right). Assuming, for the sake of example, that
all gates have equal power consumption and that the 0 → 1
transition consumes more power than the 1→ 0 transition for
these gates, the highest possible peak power for this example
happens in cycle 6 in the “even” activity trace, when all the
gates have a 0→ 1 transition.
3.3 Input-independent Peak Energy Requirements
Our technique generates a per-cycle peak power trace char-
acterizing all possible execution paths of an application. The
peak power trace can be used to generate peak energy require-
ments. Figure 11 shows per-cycle peak power traces sampled
from our benchmark applications. Since per-cycle peak power
varies significantly over the compute phases of an applica-
tion, peak energy can be significantly lower than assuming
the maximum peak energy (i.e., peak power ∗ clock period ∗
number of cycles). Instead, the peak energy of an applica-
tion is bounded by the execution path with the highest sum of
per-cycle peak power multiplied by the clock period. To avoid
enumerating all execution paths, we use several techniques.
For an input-dependent branch, peak energy is computed by
selecting the branch path with higher energy. For a loop whose
number of iterations is input-independent, peak energy can be
computed as the peak energy of one iteration multiplied by
the number of iterations. For cases where the number of iter-
ations is input-dependent, the maximum number of iterations
may be determined either by static analysis or user input (as
suggested by prior work [25]) 6. If neither is possible, it may

5It is possible that glitching between clock edges can impact the power
profile for an application. This impact can be accounted for by Primetime’s
power analysis [39].

6The number of loop iterations is bounded for all evaluated benchmarks.
In general, applications with unbounded runtimes are uncommon in embed-
ded domains.
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Figure 11: The per-cycle peak power varies significantly over
the course of an application, showing that the worst-case aver-
age power can be significantly lower than peak power. There-
fore, the peak energy can be significantly lower than the prod-
uct of peak power and application runtime would suggest.

not be possible to compute the peak energy of the application;
however, this is uncommon in embedded applications [1].

3.4 Validation of X-based Analysis
To demonstrate that our symbolic execution-based (X-based)
activity analysis marks all gates that could possibly be toggled
by an application for all possible inputs, we performed a vali-
dation check by comparing the sets of gates toggled by input-
based simulations for several different input sets against the
set of gates marked as potentially-toggled by symbolic sim-
ulation. Figure 12 illustrates this comparison for two input-
based simulations of the mult benchmark with different input
sets – those that have the lowest and highest number of tog-
gled gates. In the figure, toggled gates common to X-based
and input-based simulation are shown as Xs, and gates that
are exclusively marked by symbolic simulation as potentially-
toggled are shown as blue triangles. As expected, there are
no gates that are exclusively marked by input-based simula-
tion. Our validation results show that all the gates toggled by
input-based simulation are also marked as potentially-toggled
by X-based symbolic simulation, validating the correctness of
our approach for characterizing toggle activity.

We perform a second validation of our technique by com-
paring the peak power traces generated for benchmarks by our
technique against power traces generated by input-based exe-
cution of the benchmarks. The validation results confirm that
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Figure 12: Toggled gates for mult with low-activity inputs
(top) and high-activity inputs (bottom), compared against
potentially-toggled gates identified by X-based analysis. X-
based simulation marks all gates that can potentially toggle
for an application for all possible inputs. This set of gates
(unique x ∪ common) is a superset of the gates that toggle
during an input-based application execution (common).
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Figure 13: The X-based peak power trace generated by our
technique for an application provides an upper bound on all
possible input-based power traces for the application. (result
shown for mult)

our peak power trace always provides an upper bound on the
power of any input-based power trace. Figure 13 shows an ex-
ample; the X-based peak power trace for the mult application
is always higher than the input-based power trace. These val-
idation results also show that the X-based peak power trace
closely matches the input-based trace, indicating that the peak
power and energy requirements generated by our technique
are not overly conservative.

3.5 Enabling Peak Power Optimizations
Since our technique is able to associate the input-indepe-ndent
peak power consumption of a processor with the particular
instructions that are in the pipeline during a spike in peak
power, we can use our tool to identify which instructions
or instruction sequences cause spikes in peak power. Our

technique can also provide a power breakdown that shows the
power consumption of the microarchitectural modules that are
exercised by the instructions. These analyses can be combined
to identify which instructions executing in which modules
cause power spikes. After identifying the cause of a spike,
we can use software optimizations to target the instruction
sequences that cause peaks and replace them with alternative
sequences that generates less instantaneous activity and power
while maintaining the same functionality. After optimizing
software to reduce a spike in peak power, we can re-run our
peak power analysis technique to determine the impact of
optimizations on peak power. Guided by our technique, we
can choose to apply only the optimizations that are guaranteed
to reduce peak power.
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Figure 14: A snapshot of instantaneous power profiles for
mult at two different COIs where peaks occur. Our technique
analyzes the instructions in the pipeline (top) to find each
COI’s culprit instructions that cause the peak power in each
pipeline stage along with the per-module peak power break-
down (bottom) to identify which instructions in which mi-
croarchitectural modules are responsible for a peak.

Figure 14 shows an example where our technique identi-
fies peak power spikes in cycles 146 and 150. Our technique
also reports the instructions in each stage of the pipeline dur-
ing those cycles of interest (COIs), as well as the per-module
power breakdown for those cycles, which identifies the mod-
ules that are consuming the most power. This information can
be used to guide optimizations that replace the instructions
with different instruction sequences that induce less activ-
ity and power in the modules that consume the most power.
Since software optimizations can impact performance as well
as peak power, we will discuss optimizations that reduce peak
power and their impact on performance and energy in Sec-
tion 5.1.
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Figure 15: Different applications and different input sets for
the same application have different peak power and peak
energy requirements. (results for openMSP430)

4. Methodology
4.1 Simulation Infrastructure and Benchmarks
We verify our technique on a silicon-proven processor – open-
MSP430 [18], an open-source version of one of the most pop-
ular ULP processors [7, 43]. The processor is synthesized,
placed, and routed in TSMC 65GP technology (65nm) for
an operating point of 1V and 100 MHz using Synopsys De-
sign Compiler [38] and Cadence EDI System [11]. Gate-level
simulations are performed by running full benchmark appli-
cations on the placed and routed processor using a custom
gate-level simulator that efficiently traverses the control flow
graph of an application and captures input-independent activ-
ity profiles (Section 3). We show results for all benchmarks
from [45] and all EEMBC benchmarks that fit in the pro-
gram memory of the processor. These benchmarks are cho-
sen to be representative of emerging ultra-low-power applica-
tion domains such as wearables, internet of things, and sensor
networks [45]. The IPC of these benchmarks on our proces-
sor varies from 1.25 to 1.39, with an average of 1.29. Power
analysis is performed using Synopsys Primetime [39]. Exper-
iments were performed on a server housing two Intel Xeon
E-2640 processors (8-cores each, 2GHz operating frequency,
64GB RAM).

Section 2 shows measured data for an MSP430F1610 pro-
cessor that demonstrate that different applications have dif-
ferent peak power and energy requirements, and the require-
ments of an application can vary significantly for different
inputs. The results motivate an application-specific input-
independent technique for determining the peak power and
energy requirements for ULP processors. For the results in
Section 5, we perform evaluations on the open source open-
MSP430 processor [18]. Figures 15a and 15b confirm that
the peak power and energy requirements of openMSP430
also depend on the application and application inputs. Note
that the results in Figure 7 and Figure 15 differ because they
are for different implementations of the MSP430 architec-
ture (MSP430F1610 and openMSP430), with different pro-
cess technology (130 nm vs 65 nm) and operating frequencies
(8MHz vs 100 MHz).

4.2 Baselines
For baselines, we compare against conventional techniques
for determining the peak power and energy requirements of
processors. An overview of the baseline techniques can be
found in Figure 4. The design specification-based baseline
(design tool) is determined by performing power and energy

Table 3: Benchmarks

Embedded Sensor Benchmarks [45]
mult, binSearch, tea8, intFilt,
tHold, div, inSort, rle, intAVG

EEMBC Embedded Benchmarks [1]
Autocorr, FFT, ConvEn, Viterbi
Control Systems Benchmark

Proportional Integral Controller (PI)

analysis of the design using the default input toggle rate used
by our design tools [39]. The stressmark-based baselines (GB
input-based) use stressmarks that target peak instantaneous
power and average power. Kim et al. used a genetic algo-
rithm to automatically generate stressmarks that target max-
imum di/dt-induced voltage droop for a microprocessor [26].
We modified their framework to generate stressmarks that tar-
get peak instantaneous power and average power for open-
MSP430. The profiling-based baseline (input-based) is gen-
erated by performing input-based power and energy profiling
for several input sets and applying a guardbanding factor of
4/3 to the peak power and energy observed during profiling.
The guardbanding factor is the same as in prior studies [3, 28]
and is appropriate for the input-dependent peak power vari-
ability exhibited by our benchmarks (Figure 7a).

5. Results
We use our technique described in Section 3 to determine
peak power and energy requirements for a ULP processor
for different benchmark applications. Figure 16 compares the
peak power requirements reported by our technique against
the conventional techniques for determining peak power re-
quirments, described in Section 4.2. The results show that the
peak power requirements reported by our X-based technique
are higher than the highest input-based application-specific
peak power for all applications, confirming that our tech-
nique provides a bound on peak power. The results also show
that our technique provides the most accurate bound on peak
power, compared to conventional techniques for determining
peak power requirements. For example, the peak power re-
quirements reported by our technique are only 1% higher than
the highest observed input-based peak power for the bench-
mark applications, on average. Other techniques for determin-
ing peak power and energy requirements are significantly less
accurate, which can lead to inefficiency in critical system pa-
rameters such as size and weight (see Section 1).

Our technique is more accurate than application-oblivi-
ous techniques such as determining peak power requirements
from a stressmark or design specification, because an applica-
tion constrains which parts of the processor can be exercised
in a particular cycle. Our technique also provides a more ac-
curate bound than a guardbanded input-based peak power re-
quirement, because it does not require a guardband to account
for the non-determinism of input-based profiling (shown in
Figure 16 as error bars). By accounting for all possible in-
puts using symbolic simulation, our technique can bound peak
power and energy for all possible application executions with-
out guardbanding. The peak power requirements reported by
our technique are 15% lower than guardbanded application-
specific requirements, 26% lower than guardbanded stress-
mark-based requirements, and 27% lower than design spec-
ification-based requirements, on average.
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Figure 16: Our X-based technique for determining peak
power requirements provides the most accurate (least conser-
vative) guaranteed bound on peak power.

Since our technique is application-specific and does not re-
quire guardbands, one question is, “Why is the bound pro-
vided by X-based analysis more conservative for some appli-
cations than others?” The answer is that since X-based anal-
ysis provides a bound on power for all possible inputs, it be-
comes more conservative when there is greater possibility for
input-dependent variation in power. For example, the multi-
plier is a relatively large, high-power module, with high poten-
tial for input-dependent variation in power consumption. For
some inputs (e.g., X ∗ 0), power consumed by the multiplier
is minimal, since there are no partial products to compute.
For other inputs (e.g., two very large numbers), the power
consumed by the multiplier is much larger. Since our sym-
bolic simulation technique assumes Xs for inputs, we always
assume the highest possible power for a multiply instruc-
tion. Therefore, X-based peak power requirements for appli-
cations that contain a large number of multiplications may be
more conservative than X-based requirements for other appli-
cations.

Conversely, the tea8 application, which performs encryp-
tion, only uses low-power ALU modules – shift register and
XOR – that have significantly less potential for input-induced
power variation. As a result, X-based analysis closely matches
input-based profiling results for this application. For all ap-
plications, even those with more potential for input-induced
power variation, our X-based analysis technique provides a
peak power bound that is more accurate than those provided
by conventional techniques.

Our technique also provides more accurate bounds on peak
energy than conventional techniques, partly because of the
reasons mentioned above, and also because our technique is
able to characterize the peak energy consumption in each cy-
cle of execution, generating a peak energy trace that accounts
for dynamic variations in energy consumption. Using a de-
sign specification to determine peak energy is particularly
inaccurate, since it does not consider dynamic variations in
the energy requirements of an application. The guardbanded
input-based technique, which does consider dynamic varia-
tions, provides a more accurate peak energy bound than the
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Figure 17: Our X-based technique for determining peak en-
ergy requirement (normalized to application run-time in cy-
cles, i.e., the peak average power) is more accurate than exist-
ing conventional techniques.

design specification for all benchmarks. However, it does not
always provide a more accurate bound than the design speci-
fication for peak power, since peak power is an instantaneous
phenomenon that is less dependent on dynamic variations.
Figure 17 presents peak energy of different benchmarks, nor-
malized to application runtime in cycles, i.e., peak average
power, which characterizes the maximum rate at which the ap-
plication can consume energy. In Figure 17, the peak energy
requirements reported by our technique are 17% lower than
guardbanded application-specific requirements, 26% lower
than guardbanded stressmark-based requirements, and 47%
lower than design specification-based requirements, on av-
erage. As expected, application-specific normalized peak en-
ergy (Figure 17) varies less than peak power (Figure 16), since
peak energy characterizes average peak power over the entire
execution of an application, whereas peak power corresponds
to one instant in the application’s execution.

As described in Section 1, more accurate peak power and
energy requirements can be leveraged to reduce critical ULP
system parameters like size and weight. For example, reduc-
tion in a Type 1 system’s peak power requirements allows a
smaller energy harvester to be used. System size is roughly
proportional to harvester size in Type 1 systems. In Type 2
systems, it is the peak energy requirement that determines the
harvester size; reduction in peak energy requirement reduces
system size roughly proportionally. Since required battery ca-
pacity depends on a system’s peak energy requirement, and
effective battery capacity depends on the peak power require-
ment, reductions in peak power and energy requirements both
reduce battery size for Type 2 and 3 systems.

A ULP system may contain other components, such as
transmitter/receiver, ADC, DAC, and sensor(s), along with the
processor. All of these components may contribute to the sys-
tem’s peak power and energy, and hence, the sizing of the har-
vester and battery. Tables 4 and 5 show the percentage reduc-
tion in the harvester size and battery size, respectively, from
our technique for different fractions representing the proces-



Table 4: Percentage reduction in harvester area compared to
different baseline techniques, averaged over all benchmarks,
for different percentage contributions of the processor peak
power to the system peak power.

Baseline 10% 25% 50% 75% 90% 100%
GB-Input 1.49 3.73 7.47 11.21 13.45 14.94
GB-Stress 2.60 6.47 12.95 19.42 23.31 25.90
Design Tool 2.68 6.70 13.41 20.12 24.14 26.82

Table 5: Percentage reduction in battery volume compared to
different baseline techniques, averaged over all benchmarks,
for different percentage contributions of the processor energy
to the overall energy of the system.

Baseline 10% 25% 50% 75% 90% 100%
GB-Input 1.74 4.37 8.74 13.11 15.73 17.48
GB-Stress 2.59 6.49 12.98 19.48 23.37 25.97
Design Tool 4.66 11.66 23.32 34.98 41.97 46.64

sor’s contribution to the system’s peak power and energy. For
a real system such as the one shown in Figure 2, which has a
harvester area of 32.6cm2 and a battery volume of 6.95mm3,
the area reduction of the harvester is 4.87, 8.44, or 8.75cm2

if the system is designed using guardbanded input-based pro-
filing, guardbanded stressmark, or design tool, respectively,
for estimating the peak power of the processor. Similarly, the
volume reduction of the battery is 0.42, 0.63, or 1.12mm3,
respectively.7 As expected, savings from our technique are
higher when the processor is the dominant consumer of power
and energy in the overall system.8

5.1 Optimizations
As discussed in Section 3.5, our technique can be used to
guide application-level optimizations that reduce peak power.
Here, we discuss three software optimizations, suggested by
our technique, that we applied to the benchmark applications
to reduce peak power. The optimizations were derived by
analyzing the processor’s behavior during the cycles of peak
power consumption. This analysis involves (a) identifying
instructions in the pipeline at the peak, and (b) identifying the
power contributions of the microarchitectural modules to the
peak power to determine which modules contribute the most.

The first optimization aims to reduce a peak by “spreading
out” the power consumed in a peak cycle over multiple cycles.
This is accomplished by replacing a complex instruction that
induces a lot of activity in one cycle with a sequence of
simpler instructions that spread the activity out over several
cycles.

The second optimization aims to reduce the instantaneous
activity in a peak cycle by delaying the activation of one or
more modules, previously activated in a peak cycle, until a
later cycle. For this optimization, we focus on the POP instruc-
tion, since it generates peaks in some benchmarks. The peaks
are caused since a POP instruction generates high activity on

7The battery is a thin film battery of dimensions 5.7mm × 6.1mm × 200
µm (area of 34.7mm2). Assuming the height of the battery doesn’t change,
the corresponding savings in battery area are 6.07, 9.01, and 16.18mm2,
respectively.

8ITRS 2015 projections show that the microcontroller will be the domi-
nant consumer of power in future IoT and IoE systems [2].

mov &0x013a, r15;
pop r2;

mov &0x013a, r15
mov #0, r9
mov @r1, r2
add #2, r15

OPT	1

(a) OPT 1

mov &0x013a, r15;
pop r2;

mov &0x013a, r15
mov #0, r9
mov @r1, r2
add #2, r1

OPT	1

(b) OPT 2

mov -6(r4), &0x0132
mov -4(r4), &0x0138
mov 0x013a, r15

mov -6(r4), &0x0132
mov -r(r4), &0x0138
nop
mov 0x013a, r15

OPT	3

(c) OPT 3

Figure 18: Instruction optimization transforms.

the data and address buses and simultaneously uses the incre-
menter logic to update the stack pointer. To reduce the peak,
we break down the POP instruction into two instructions – one
that moves data from the stack, and one that increments the
stack pointer.

The third optimization is based on the observation that for
some applications, peak power is caused by the multiplier (a
high-power peripheral module) being active simultaneously
with the processor core. To reduce peak power in such scenar-
ios, we insert a NOP into the pipeline during the cycle in which
the multiplier is active.

The three optimizations we applied to our benchmarks to
reduce peak power are summarized below. The optimizations
are shown in Figure 18.
•Register-Indexed Loads (OPT 1): A load instruction (MOV)
that references the memory by computing the address as an
offset to a register’s value involves several micro-operations –
source address generation, source read, and execute. Breaking
the micro-operations into separate instructions can reduce the
instantaneous power of the load instruction. The ISA already
provides a register indirect load operation where the value of
the register is directly used as the memory address instead of
as an offset. Using another instruction (such as an ADD or SUB),
we can compute the correct address and store it into another
register. We then use the second register to execute the load in
register indirect mode.
• POP instructions (OPT 2): The micro-operations of a POP
instruction are (a) read value from address pointed to by the
stack pointer, and (b) increment the stack pointer by two. POP
is emulated using MOV @SP+, dst. This can be broken down
to two instructions –
MOV @SP, dst and ADD #2, SP.
• Multiply (OPT 3): The multiplier is a peripheral in open-
MSP430. Data is MOVed to the inputs of the multiplier and then
the output is MOVed back to the processor. For a 2-cycle mul-
tiplier, all moving of data can be done consecutively without
any waiting. However, this involves a high power draw, since
there will be a cycle when both the multiplier and the proces-
sor are active. This can be avoided by adding a NOP between
writing to and reading from the multiplier.

Figure 19 shows the reduction in peak power achieved by
applying the optimizations motivated by our technique. Re-
sults are quantified in terms of peak power reduction, as well
as reduction in peak power dynamic range, which quantifies
the difference between peak and average power. Peak power
dynamic range decreases as peaks are reduced closer to the
range of average power. Reduction in peak power dynamic
range can improve battery lifetime in Type 2 and 3 systems,
and reduction in peak power requirements can be leveraged to
reduce harvester size in Type 1 systems (see Section 1). Our
results show that peak power can be reduced by up to 10%,
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Figure 19: Peak power reduction (left axis) and peak power
dynamic range reduction (right axis) achieved by optimiza-
tions. These reductions are enabled by our analysis tool and
provide further reduction in energy harvester size.

and 5% on average. Peak power dynamic range can be re-
duced by up to 34%, and 18% on average. Figure 20 shows the
peak power traces for an example application before and after
optimization, demonstrating that optimization can reduce the
peak power requirements for an application.
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Figure 20: A snapshot of instantaneous power profiles for
mult before and after optimization.

Since optimizations that reduce peak power can increase
the number of instructions executed by an application, we
evaluated the performance and energy impact of the optimiza-
tions. Figure 21 shows the results. Applying the optimizations
suggested by our technique degrades performance by up to 5%
for one application, and by 1% on average. On average, the
optimizations increase energy by 3%. Although the optimiza-
tions increase energy slightly, they can still enable reduction
in size for Type 1 systems, in which harvester size is dictated
by peak power, and may also reduce the size of Type 2 and
3 systems, where both peak power and energy determine the
size of energy storage and harvesting components (see Fig-
ure 3).
6. Generality and Limitations
We applied our techniques in the context of ULP processors
that are already the most widely-used type of processor and
are also expected to power a large number of emerging ap-
plications [15, 30, 34, 40, 44]. Such processors also tend to
be simple, run relatively simple applications, and do not sup-
port non-determinism (no branch prediction and caching; for
example, see Table 6). This makes our symbolic simulation-
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Figure 21: Performance degradation and energy overhead in-
troduced by peak power optimizations is small(1%, on aver-
age).

Table 6: Microarchitectural features in recent embedded pro-
cessors

Processor Branch Predictor Cache
ARM Cortex-M0 no no
ARM Cortex-M3 yes no

Atmel ATxmega128A4 no no
Freescale/NXP MC13224v no no

Intel Quark-D1000 yes yes
Jennic/NXP JN5169 no no

SiLab Si2012 no no
TI MSP430 no no

based technique a good fit for such processors. Below, we dis-
cuss how our technique may scale for complex processors and
applications, if necessary.

More complex processors contain more performance-
enhancing features such as large caches, prediction or specu-
lation mechanisms, and out-of-order execution, that introduce
non-determinism into the instruction stream. Co-analysis is
capable of handling this added non-determinism at the ex-
pense of analysis tool runtime. For example, by injecting an
X as the result of a tag check, both the cache hit and miss
paths will be explored in the memory hierarchy. Similarly,
since co-analysis already explores taken and not-taken paths
for input-dependent branches, it can be adapted to handle
branch prediction. In an out-of-order processor, the ordering
of instructions is based on the dependence pattern between
instructions. Thus, extending input-independent CFG explo-
ration to also explore the data flow graph (DFG) may allow
analysis of out-of-order execution.

In other application domains, there exist applications with
more complex CFGs. For more complex applications, heuris-
tic techniques may be used to improve scalability of hardware-
software co-analysis. While heuristics have been applied to
improve scalability in other contexts (e.g., verification) [10,
19], heuristics for hardware-software co-analysis must be con-
servative to guarantee that no gate is marked as untoggled
when it could be toggled. The development of such heuristics
is the subject of future work.

In a multi-programmed setting (including systems that sup-
port dynamic linking), we take the union of the toggle activi-



ties of all applications (caller, callee, and the relevant OS code
in case of dynamic linking) to get a conservative peak power
value. For self-modifying code, peak power for the processor
would be chosen to be the peak of the code version with the
highest peak. In case of fine-grained multi-threading, any state
that is not maintained as part of a thread’s context is assumed
to have a value of X when symbolic execution is performed
for an instruction belonging to the thread. This leads to a safe
guarantee of peak power for the thread, irrespective of the be-
havior of the other threads.

Our technique naturally handles state machines that run
synchronously with the microcontroller. For state machines
that run asynchronously (e.g., ADCs, DACs, bus controllers),
we assume the worst-case power at any instant by separately
analyzing the asynchronous state machine to compute peak
power and energy and adding the values to those of the proces-
sor. Asynchronous state machines are generally much smaller
than the actual processor, allowing us to not be overly conser-
vative.

A similar approach can be used to handle interrupts. I.e.,
offset the peak power with the worst power consumed during
interrupt detection. The effect of an asynchronous interrupt
can be characterized by forcing the interrupt pin to always
read an X. Since this can potentially cause the PC to be
updated with an X, we can force the PC update logic to
ignore the interrupt handling logic’s output. This is achieved
by monitoring a particular net in the design and forcing it to
zero every time its value becomes X. Interrupt service routines
(ISRs) are regular software routines and can be analyzed with
the rest of the code.

7. Related Work
Peak power has been analyzed in several settings in literature.
In particular, several techniques have been proposed to esti-
mate the peak power of a design. Hsiao et al. [20, 21] pro-
pose a genetic algorithm-based estimation of peak power for
a circuit. Wang et al. [42] use an automatic test generation
technique to compute lower and upper bounds for maximum
power dissipation for a VLSI circuit. Sambamurthy et al. [35]
propose a technique that uses a bounded model checker to
estimate peak dynamic power at the module-level. The tech-
nique is also functionally valid at the processor level. Najeeb
et al. [32] propose a technique that converts a circuit behav-
ioral model to an integer constraint model and employs an
integer constraint solver to generate a power virus that can
be used to estimate the peak power of the processor. To the
best of our knowledge, no prior work exists on determining
application-specific peak power for a processor based on sym-
bolic simulation.

The above techniques require a low-level description of
the processor (behavioral or gate-level). Techniques have
also been proposed at the architecture-level to predict when
power exceeds the peak power budget or to lower the peak-
to-average power variation. Sartori et al. [36] propose the use
of DVFS techniques to manage peak power in a multi-core
system. Kontorinis et al. [28] proposed a configurable core to
meet peak power constraints with minimal impact on perfor-
mance. Our technique identifies the peak power and energy
requirements of a processor through hardware-software co-
analysis.

Estimating peak energy of an application has been previ-
ously studied as the worst case energy consumption (WCEC)

problem [25, 37, 41]. However, prior techniques do not use
accurate power models, instead relying on microarchitectural
models, which do not consider the detailed state of a proces-
sor or input values. As observed by [31], the power of an in-
struction can differ based on the previous instructions in the
pipeline and its operand values. Our peak power computation
technique analyzes an application on a gate-level processor
netlist, allowing us to account for the fine-grained interaction
between instructions and the worst-case operand values. The
result is an accurate power model that can be used for WCEC
analyses such as the example analysis in Section 5. Prior work
on worst-case timing analysis simply identified the timing-
critical path through the program. However, the timing-critical
path through a program may not be energy-critical [25, 37].
We calculate energy across all paths through gate-level simu-
lation to determine the path with highest energy.

Symbolic simulation has been applied in circuits for logic
and timing verification, as well as sequential test genera-
tion [8, 16, 24, 27, 29] and determination of application-
specific Vmin [13]. Symbolic simulation has also been ap-
plied for software verification [46]. However, to the best of
our knowledge, no existing technique has applied symbolic
simulation to determine the peak power and energy require-
ments of an application running on a processor.

8. Conclusion
In this paper, we showed that peak power and energy re-
quirements for an ultra-low power embedded processor can
be application-specific as well as input-specific. This renders
profiling methods to determine the peak power and energy of
ULP processors ineffective, unless conservative guardbands
are applied, increasing system size and weight. We presented
an automated technique based on symbolic simulation that de-
termines a more aggressive peak power and energy require-
ment for a ULP processor for a given application. We show
that the application-specific peak power and energy require-
ments determined by our technique are more accurate, and
therefore less conservative, than those determined by conven-
tional techniques. On average, the peak power requirements
determined by our technique are 27%, 26%, and 15% lower
than those generated based on design specifications, a stress-
mark, and profiling, respectively. Peak energy requirements
generated by our technique are 47%, 26%, and 17% lower, on
average, than those generated based on design specifications,
a stressmark, and profiling, respectively. We also show that
our technique can be used to guide optimizations that target
and reduce the peak power of a processor. Optimizations sug-
gested by our technique reduce peak power by up to 10% for
a set of benchmarks.
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