
A Numerical Optimization-based Methodology for
Application Robustification: Transforming Applications

for Error Tolerance

Joseph Sloan, David Kesler, Rakesh Kumar
University of Illinois
Urbana-Champaign

jsloan,dkesler2,rakeshk@illinois.edu

Ali Rahimi
Intel Labs
Berkeley

ali.rahimi@intel.com

ABSTRACT
There have been several attempts at correcting process vari-
ation induced errors by identifying and masking these er-
rors at the circuit and architecture level [10, 27]. These ap-
proaches take up valuable die area and power on the chip.
As an alternative, we explore the feasibility of an approach
that allows these errors to occur freely, and handle them in
software, at the algorithmic level. In this paper, we present
a general approach to converting applications into an error
tolerant form by recasting these applications as numerical
optimization problems, which can then be solved reliably
via stochastic optimization. We evaluate the potential ro-
bustness and energy benefits of the proposed approach us-
ing an FPGA-based framework that emulates timing errors
in the floating point unit (FPU) of a Leon3 processor [11].
We show that stochastic versions of applications have the
potential to produce good quality outputs in the face of tim-
ing errors under certain assumptions. We also show that
good quality results are possible for both intrinsically ro-
bust algorithms as well as fragile applications under these
assumptions.

1. INTRODUCTION
Power has been, for some time now, a first order design

constraint for microprocessors [1]. In fact, performance,
yield, and functionality are routinely sacrificed for power
considerations today [17, 24].

An important reason why modern microprocessors con-
sume a significant amount of power is that they are often de-
signed conservatively (i.e., areguardbanded) to allow cor-
rect operation under the worst-case manufacturing and en-
vironmental conditions [7]. The power cost of conservative
design is high and is only increasing with increasing pro-
cess variation in the current CMOS and post-CMOS tech-
nologies. Applying a power reduction technique such as
voltage scaling reduces power, but the benefits continue to
be limited by the inherently conservative nature of the base-
line worst-case design [29].

Some recent proposals [10] have advocated reducing pro-
cessor power by eliminating design-level guardbands against
worst-case conditions. Processors without design-level guard-
bands consume lower power than their counterparts designed
for the worst-case. However, such processors may be unre-
liable once the voltage is reduced below a certain threshold.
Unreliability is due to the possibility of timing errors in-
duced by process variation and environmental fluctuations.

Previous proposals largely employ hardware-based mech-
anisms to detect and correct variation-induced errors in pro-
cessors with reduced guardbands. These mechanisms often
rely on temporal or spatial redundancy to detect and cor-
rect the errors. Hardware-based mechanisms to detect and
correct variation-induced timing errors have associated area
and power costs. Costs may be especially prohibitive in the
face of drastic reduction in the supply voltage [10, 25].

In this paper, we explore the feasibility of an approach
that allows these errors to occur freely, and handle them in
software, at the algorithmic level. (Figure 1) An algorith-
mic approach for error correction would allow us to elim-
inate or minimize the area and power cost of lower-level
hardware-based mechanisms to detect and correct errors by
replacing the original computation with one that may take
slightly longer to complete. The approach presented in this
paper consists of reformulating applications as stochastic
optimization problems. In the last thirty years, the machine
learning and numerical optimization community has pro-
duced and analyzed many successful stochastic optimiza-
tion procedures and online learning algorithms for solving
large-scale learning problems (see [21, 8, 26] for surveys).
We propose an entirely different application for stochas-
tic optimization: a generic engine for building robust ap-
plications on processors that produce variation-induced er-
rors. Unlike the traditional setting for stochastic gradient
descent, where stochasticity arises because the gradient di-
rection is computed from a random subset of a dataset, here
the processor itself is the source of stochasticity. We call
our approachapplication robustification.



Conventional 
Software

Hardware

��������
Robustified
Software

Hardware
GuardBanding

Figure 1: The traditional approach to dealing with
hardware uncertainties is through guradbanding. We
allow hardware errors to be exposed to software which
is robustified to tolerate these errors.

As a specific instance of the proposed approach, we show
that it is possible, under certain optimistic assumptions,to
robustify a large class of important, common applications
against timing errors that occur in the numerical units of
voltage overscaled processors. For example, solving Least
Squares problems or finding eigenvalues of a matrix can be
readily cast in a variational form. Similarly many combina-
torial problems such as sorting an array of numbers, find-
ing a minimum cut, a maximum flow, shortest distances,
or a matching in a graph can also be cast into variational
form. To solve such problems on a stochastically correct
processor (stochastic processor) [19, 3, 20, 4], we express
them as constrained optimization problems, mechanically
convert these to an unconstrained exact penalty form, and
then solve them using stochastic gradient descent and con-
jugate gradient algorithms. When the source of unreliabil-
ity in the processor is stochastic, existing theoretical re-
sults on the convergence rate and robustness of stochas-
tic gradient optimization carry over directly to this setting.
This approach is quite generic, since linear programming,
which is P-complete, can be implemented this way. In fact,
we present examples of robustification under optimistic as-
sumptions for both applications for which precise outputs
are typically required (fragile applications), e.g.,sorting,
etc., as well as the ones for which small errors in the output
are typically acceptable (intrinsically robust applications),
e.g.,IIR filters, etc.

Note that this paper explores only the potential upside
of the proposed approach. Several simplifying assumptions
have been made (as discussed in Section 6 and throughout
the paper). Future work will continue to evaluate and miti-
gate the costs.

Our contributions in this paper are as follows:
• We present a general approach for converting appli-

cations into a form that may be robust to variation-
induced errors. Our approach is applicable, under
certain optimistic assumptions, to all applications that
can be mapped into a stochastic optimization prob-
lem. To the best of our knowledge, this is the first
work on a generic methodology to transform applica-
tion code for error tolerance that may work for both
fragile and intrinsically robust applications.

• We develop an FPGA-based framework for evaluating
the potential robustness benefits of the proposed ap-
proach. Our FPGA-based framework emulates timing
errors in the floating point unit (FPU) of a Leon3 [11]
processor. We show through our experiments that stochas-
tic versions of applications can produce good quality
outputs in the face of errors under certain assump-
tions. We also show that good quality results are pos-
sible for both intrinsically robust algorithms as well
as fragile applications.

• We demonstrate that there is a real need to develop
optimization-based code transformation methodologies
that address the processor as a new source of stochas-
ticity. Writing stochastic versions of applications may
become a necessity for future CMOS and post-CMOS
computing due to increasing variation. Our future
work will evaluate and mitigate the costs of the pro-
posed approach.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 summarizes known prop-
erties of stochastic gradient solvers and illustrates a generic
framework for implementing robust applications using mod-
ified gradient descent. Section 4 presents four examples of
converting an application into its robust, stochastic form.
Section 5 presents our methodology and results. Section 6
discusses the limitations of the proposed methodology and
future work. Section 7 concludes.

2. RELATED WORK
Recently proposed stochastic processor designs [19, 3,

20, 4] aim to fundamentally re-think the software / hard-
ware interface by allowing hardware to produce errors even
during nominal operation. The numerical algorithmic tech-
niques presented in this paper represent one method of ad-
dressing errors in stochastic processors by handling them at
the application level.

Some past works have also addressed error tolerance at
the algorithmic level. Algorithmic noise tolerance [14] is
a technique for DSPs in which voltage overscaling is em-
ployed to reduce power consumption and knowledge of the
DSP’s transfer function and input/output characteristicsare
used to tolerate errors that occur. Error resilient system
architectures [5] target probabilistic algorithms and usea
large pool of unreliable, power-efficient computing resources
as the main workhorse, while a smaller set of reliable re-
sources is used to deal with errors and ensure that compu-
tations are completed. Algorithm-based fault tolerance [16]
addresses errors at the algorithmic level by encoding input
data with supplemental checksums, modifying algorithms
to produce the encoding for the output data, and using the
encoded data to detect and correct errors when possible. In



����

�
�

�
�

��

Non-Robust 
Application

Figure 2: Application Robustification involves convert-
ing an application to an unconstrained optimization
problem, where the minimum corresponds to the output
of the original non-robust application.

contrast to the above approaches that are limited by their
application-specific nature, the methodology that we present
in this paper for application-level error tolerance is generic
and can potentially drive a large class of important applica-
tions on stochastic processors.

3. PROPOSED APPROACH
Our goal is to recast a given problem into an equivalent

numerical problem that can tolerate noise in the FPU, and
whose solution encodes the solution to the equivalent prob-
lem. Let the vectorx∗ denote the (unknown) solution to
our problem. To devise a robust algorithm, we construct
a cost functionf whose minimum is attained atx∗. Solv-
ing the problem then amounts to minimizingf . The main
challenges, as illustrated in Figure 2:

• How to constructf without knowing the actual value
of x∗ a priori?
• How to choose an optimization engine that converges

quickly and tolerates CPU noise?

Since the selection of the minimization function can of-
ten depend on the optimization engine, we first detail the
choice of our optimization engine.

3.1 Stochastic Solvers for Constrained Opti-
mization

Under mild conditions, as long as step sizes are chosen
carefully, gradient descent converges to a local optimum of
the cost function even when the gradient is known only ap-
proximately. For this reason, we rely on gradient descent
as the primary optimization engine to construct algorithms
that tolerate noise in the CPU’s numerical units. To mini-
mize a cost functionf : Rd → R, gradient descent gener-
ates a sequence of stepsx1 . . . xi ∈ R

d via the iteration

xi ← xi−1 + λi∇f(xi−1), (1)

starting with a given initial iteratex0 ∈ R
d. The vector

∇f(xi−1) is a subgradient off at xi−1, and the positive
scalarλi is a step size that may vary from iteration to itera-
tion. The goal is for the sequence of iterates to converge to
a local optimizer,x∗, of f .

The bulk of the computation in gradient descent is in
computing the gradient∇f . There may be variation-induced
errors while computing∇f . We denote the resulting noisy
gradient by∇f(xi−1; ξi), with ξi denoting a random vari-
able independent ofxi−1. The remaining operations, in-
cluding computing the step size, updatingxi with the step,
and testing for convergence, are assumed to be carried out
reliably as they are critical for convergence. Thankfully,
these steps require relatively little computation and can be
robustified at a small cost (e.g., increasing the voltage dur-
ing these steps, software-level redundancy, etc.).

The suitability of gradient descent for processors with re-
duced guardbands is due to the fact that under various as-
sumptions of local convexity onf , xi is known to approach
the true optimum as iterations progress. The following the-
orem is distilled from [21], but variants of these results have
appeared throughout the literature (for example, [8, 26, 31]
and references therein)

THEOREM 1. Letx∗ be a minimizer off . Suppose that
the noisy subgradient,∇f(x; ξ) is unbiased (Eξ∇f(x; ξ) =
∇f(x)), and has bounded variance (Eξ ‖∇f(x, ξ)‖2 <
M2 for some scalarM > 0).

If f is convex, lower-semicontinuous, and the step sizes
obeyλi = O(1/

√
i), then the iterates of (1) satisfy

E f(xi)− f(x∗) = O
(

i−1/2
)

. (2)

If f is c-strongly convex andL-Lipschitz, and the step
sizes obeyλi = O(1/i), then the iterates of (1) satisfy

E f(xi)− f(x∗) = O
(

LM2

c2 · i
−1

)

. (3)

The expectation in both cases is over the sequence of
ξ1, . . . , ξi.

Thus, not only is the correct answer recovered almost surely,
but each additional iteration improves its accuracybeyond
the precision of the subgradient. That is, even if the CPU
approximates∇f to only a few bits of precision, as long as
the approximation is unbiased, gradient descent can eventu-
ally extract a solution with arbitrarily high accuracy. There-
fore we get for free the benefit of additional iterative re-
finement techniques [15] that are typically used to improve
the accuracy of numerical algorithms on today’s processors.
The robustness of gradient descent makes it an attractive
choice as the computational back-end for solving the opti-
mization problems.

For some applications, the natural conversion is to a con-
strained variational form

minimize
x∈Rd

f(x) (4)

s.t.g(x) ≤ 0, (5)

h(x) = 0 (6)



for some functionsf , g, andh. Constrained versions of
gradient descent in the stochastic setting have been previ-
ously analyzed [21]. These methods typically involve pro-
jecting the gradient or the iterate on the feasible set after
each iteration. This step can be quite expensive, as it typ-
ically involves solving at least a Least Squares problem.
Interior point methods based on log-barrier/Newton steps
[30] are ostensibly promising, but in practice, they require
computing an Newton-step, which wipes out any potential
power benefits. Instead, we rely on an exact penalty method
to convert constrained problems into unconstrained prob-
lems that can be solved by gradient descent. The follow-
ing result is distilled from [6] (mainly Proposition 5.5.2,
and folding in Linear Independence Constraint Qualifica-
tion (LICQ) conditions ong andh):

THEOREM 2. Letx∗ be a unique optimizer of (4), withg
andh both affine linearly independent functions ofx. Then
there existsµ0 > 0 so that for everyµ > µ0, x∗ also mini-
mizes

f(x) + µ
∑

i

|hi(x)|+ µ
∑

j

[gj(x)]+ . (7)

The operator[·]+ = max(0, ·) returns its argument if it is
positive, and zero otherwise. A similar result for quadratic
exact penalty functions of the formf(x) + µ

∑

i hi2(x) +

µ
∑

j [gj(x)]
2

+
also hold [23]. This theorem states that

a constrained optimization problem of the form (4) can be
converted into an unconstrained form (7) by penalizing con-
straint violations in the objective function.

3.2 Variants on Gradient Descent
As Theorems 1 and 2 show, the actual rate of conver-

gence depends on several factors including the modulus of
convexity c of the minimization functionf , and the size
of each step taken. For example, if the objective func-
tion has low modulus of convexity (a property called ill-
conditioning), the gradient search direction can converge
arbitrarily slowly, instead bouncing around in directionsper-
pendicular toward that of the minimum. To alleviate some
of the artifacts, we can addmomentumto the search direc-
tion using the update rule:

xi ← xi−1 + λidi (8)

di ← α∇f(xi−1) + (1− α)di−1 (9)

This modified direction essentially becomes a smoothed run-
ning average of the recent directions/gradients, and the scalar
α controls the amount of smoothing in the search direction.
Adding momentum provides two benefits. If the gradient is
pointing in a similar direction for multiple consecutive it-
erations then it is likely to continue in that direction in the
next few iterations. In that case, the momentum is built up

causing the descent to move faster along this direction. On
the other hand, if the gradient is oscillating between two
different directions from iteration to iteration, then themo-
mentum helps to dampen the oscillations, and points the
search direction towards the direction of progress.

Similarly, different step sizes may work better for differ-
ent applications when performing gradient search. Scaling
the step size as1i , wherei is the number of iterations, may
make the step size too small in later iterations, making it
difficult for the search to converge. Scaling it as1√

i
allows

the step size to remain larger while still causing it to contin-
uously decrease. We also examined using a fixed number
of iterations, followed by a period of variable stepsizing.
We refer to this technique asaggressive stepping. In the
phase of variable step sizing, the step size is increased by
a factorβsuccess every time the step causes the cost func-
tion to decrease. On the other hand, the step size is de-
creased by a factorβfail every time the last move caused
the cost function to increase. The phase continues until the
percent change between two consecutive steps drops below
a threshold.

Finally, while gradient descent on a convex function is
guaranteed to make progress, it is possible to construct a
function where this progress is arbitrarily slow. Consider,
for example, an elongated quadratic valley. The gradient
descent direction is generally a poor direction for this type
of function and other ill-conditioned problems, because it
doesn’t point toward the minimum.Preconditioningfixes
this problem with gradient descent by reshaping the cost
function. Given the cost functionf(x), we minimize in-
stead a new functiong(y) = f(Ay). We chose the matrix
A so thatg(y) is better conditioned, i.e. looks more like a
bowl than a valley. Once we have the optimumy∗, we can
then recoverx∗ via the relationx = Ay.

3.3 Conjugate Gradient
While we use gradient descent as a search strategy for

most of our kernels, some kernels may warrant other search
strategies. For example, with a Least Squares problem, dis-
cussed in the following section, the structure of the prob-
lem can be exploited to construct better search directions
and step sizes. One approach, typically reserved for very
large problems, is the conjugate gradient (CG) method [13].
The method examines the gradients of the cost function to
construct a sequence of search directions that are mutually
conjugate to each other (i.e. where two search directionpi
andpj satisfypTi Apj = 0, ∀i 6= j for a particular ma-
trix A). On a reliable processor, when CG is applied to a
Least Squares problem, it is guaranteed to converge in at
mostn iterations (wheren is the number of variables to
solve for in the Least Squares problem). The convergence
of CG when the gradient directions are noisy is also well-
understood [28]. To reduce the effect of noisy gradients,



our implementation of CG resets the search direction after
every few iterations.

4. APPLICATION TRANSFORMATION FOR
ROBUSTNESS

How to transform a given problem into its variational
form (4) is often immediate from the definition of the prob-
lem. For example, the least-squares problem is already de-
fined as an optimization problem. Otherwise, the post-condition
of the problem can often be converted into a cost function
whose optimum solves the problem illustrated by the IIR
example below. Once converted into a variational form, any
optimization technique that is robust to numerical noise,
such as the ones described above, can be used to find a so-
lution to the problem. We provide several illustrative exam-
ples below.

Least Squares.
Given a matrixA and a column vectorb of the same

height, a fundamental problem in numerical linear algebra
is to find a column vectorx that minimizes the norm of the
residualAx − b. This problem is typically implemented
on current CPUs via the SVD or the QR decomposition of
A. In Section 5 we show that these algorithms are disas-
trously unstable under numerical noise, but that minimizing
f(x) = ‖Ax− b‖2 = x⊤A⊤Ax− 2b⊤x+ b⊤b by gradient
descent tolerates numerical noise well. The gradient in this
case is∇f(x) = A⊤(Ax− b).

IIR filters.
Filtering a signal with an Infinite Impulse Response (IIR)

filter is a basic operation in signal processing. The problem
is naturally defined as passing an input signalu[t] through a

rational transfer functionH(z) =
∑

n

i=0
aiz

−i

∑
m

i=0
biz−i to obtain the

desired outputx[t]. It is typically implemented on current
CPUs by the feed-forward recursion:

x[t] =
1

b0

(

n
∑

i=0

aiu[t− i]−
m
∑

i=1

bix[t− i]

)

On a stochastic processor, this recursive implementation ac-
crues noise inx ast grows. To recast this variationally, ob-
serve that the output signalx must satisfy the post-condition
∑m

i=0
bix[t − i] =

∑n
i=0

aiu[t − i] for all t, or in matrix
form, Bx = Au, where the matricesA andB are banded
diagonal,

A =











a0 0 . . .
an . . . a0 0 . . .

. . .

. . . an . . . a0











(10)

B =











b0 0 . . .
bm . . . b0 0 . . .

.. .

. . . bm . . . b0











(11)

andu andx aret-dimensional column vectors that represent
the given input and desired output signals respectively. The
desired output therefore minimizesf(x) = ‖Bx − Au‖2,
and can be found by Least Squares as described above. In
experiments, we use the standard noisy feed-forward tech-
nique to generate the initial iterate for the stochastic Least
Squares solver.

Sorting.
To sort an array of numbers on current CPUs, one often

employs recursive algorithms like QUICKSORT or MERGE-
SORT. Sorting can be recast as an optimization over the
set of permutations. Among all permutations of the entries
of an arrayu ∈ R

n, the one that sorts it in ascending or-
der also maximizes the dot product between the permutedu
and the arrayv = [1 . . . n]⊤ [9]. In matrix notation, for an
n× n permutation matrixX, Xu is the sorted arrayu if X
maximizes the linear costv⊤Xu. Since permutation ma-
trices are the extreme points of the set of doubly stochastic
matrices, which is polyhedral, such anX can be found by
solving the linear program

max
X∈Rn×n

v⊤Xu s.t.Xij ≥ 0,
∑

i

Xij ≤ 1,
∑

j

Xij ≤ 1.

(12)
The corresponding unconstrained exact quadratic penalty
function is

f(X) =− v⊤Xu+ λ1

∑

ij

[Xij ]
2

+
+ λ2

∑

i





∑

j

Xij − 1





2

+

+ λ2

∑

j

[

∑

i

Xij − 1

]2

+

(13)

whereλ1 andλ2 are suitably large constants, and theijth
coordinate of the subgradient off is

[∇f(X)]ij =− uivj + 2λ1 [Xij ]+ + 2λ2





∑

j

Xij − 1





+

+ 2λ2

[

∑

i

Xij − 1

]

+

.

(14)



Note that sorting is traditionally not thought of as an ap-
plication that is error tolerant. Our methodology produces
a potentially error tolerant implementation of sorting.

Bipartite Graph Matching.
Given a bipartite graphG = (U, V,E) with edgesE

connecting left-verticesU and right-verticesV , and weight
functionw(e), e ∈ E, a classical problem is to find a subset
S ⊆ E of edges with maximum total weight

∑

e∈S w(e) so
that everyu ∈ U and everyv ∈ V is adjacent to at most
one edge inS. This is the maximum weight bipartite graph
matching problem and is typically solved using the Hungar-
ian algorithm or by reducing to a MAX FLOW problem and
applying the Push-Relabel algorithm [12]. Like other linear
assignment problems, it can also be solved by linear pro-
gramming: letW be the|U | × |V | matrix of edge weights
and letX be a|U | × |V | indicator matrix over edges, with
Xij binary, and only one element in each row and each col-
umn ofX set. The weight of a matching given byX is then
∑

ij XijWij , which is linear inX, so it suffices to search
over doubly stochastic matrices, as in the previous example.

Typical implementations of Bipartite Graph Matching are
again not considered error tolerant. Our methodology pro-
duces a potentially error tolerant implementation of Bipar-
tite Graph Matching.

Other combinatorial problems.
A host of other combinatorial problems can be solved

exactly on stochastic processors by reduction to linear pro-
gramming. These include MAX FLOW, M INCUT, and SHORT-
ESTPATH [22]. In addition, the best approximation algo-
rithms for many NP-hard problems involve rounding the
solution to linear programs [22].

Other numerical problems.
The Courant-Fisher Minmax Theorem [13][Theorem 8.1.2]

expresses thekth largest eigenvalue and eigenvector of a
matrix in variational form. Alternatively, one can find the
top eigenvalue/eigenvector pair by maximizing a Rayleigh
quotient, subtracting the resulting rank-1 matrix from the
target matrix, and repeatingk times. Many data fitting prob-
lems, like fitting Support Vector Machines, are defined as
variational problems, and efficient stochastic gradient algo-
rithms for them already exist [26].

To summarize, the above numerical optimization-based
methodology can be used to make a large class of appli-
cations robust - the ones that require precisely correct out-
puts (fragile applications), e.g.,sorting, etc., as well as the
ones that that do not (intrinsically robust applications),e.g.,
IIR filters, etc. To the best of our knowledge, this is the
first work on a generic methodology to transform applica-
tion code for timing error tolerance that may work for both
fragile and intrinsically robust applications.

Figure 3: Measured distribution of error magnitudes
for floating point data versus the distribution used for
emulating the behavior.

�

����

����

����

����

���

����

����

��� ��� ��	 � ��� ���E
rr

or
 R

at
e 

(e
rr

or
s/

O
P

)

Supply Voltage (V)

��������	
 ������
�����������

Figure 4: Error Rate of an FPU as the voltage is scaled.

5. EXPERIMENTS

5.1 Methodology
To evaluate the robust versions of the above algorithms,

we built an FPGA-based framework with support for con-
trolled fault injection. Our framework consists of an Altera
Stratix II EP2S180 FPGA that hosts a Leon3 [11] soft core
processor. The FPGA-based framework allows us to run the
stochastic and baseline implementations of our applications
on the Leon3 core.

The framework is designed to provide us fine-grained
control over the stochasticity of the processor. To introduce
stochasticity, we chose to inject errors in the floating point
unit (FPU) of the Leon3 core. Error injection was done
using a software-controlled fault injector module that we
mapped onto the FPGA. At random times, the fault injector
perturbs one randomly chosen bit in the output of the FPU
before it is committed to a register. The distribution of bit
faults was modeled from circuit level simulations of func-
tional units [18], where many of the errors predominantly
occur in the most significant bits. The rest of the faults
primarily occur in the low order bits, resulting in low mag-
nitude errors. Figure 3 illustrates the measured distribution
of faults across floating point bits, and the distribution used
to emulate this behavior.

The time between corruptions was drawn using a uniform
distribution generated by a Linear Feedback Shift Register.
While the fault model is simplistic, it is appropriate consid-
ering the goal of the paper. Also, the fault model is a sur-
prisingly reasonable approximation of voltage overscaling-
induced errors in the FPU.



�

��

��

��

��

���

� �� �� �� �� �� ��

S
uc

ce
ss

 R
at

e 
(%

)

Fault Rate (% of FLOPs)

Accuracy of Sort - 10000 Iterations
Base SGD SGD+AS,LS SGD+AS,SQS

Figure 5: Success rate for different implementations of
Sorting as a function of fault rate

��������

��������

��������

�������	

��������

� �� 
� 	� ��

R
el

at
iv

e 
E

rr
or

 w
.r.

t. 
Id

ea
l

Fault Rate (% of FLOPs)

Accuracy of Least Squares -1000 
Iterations

Base: SVD SGD,LS SGD+AS,LS

Figure 6: Relative error for different implementations of
Least Squares as a function of fault rate (Lower is better).
SQS results in errors larger than 1.0.

����

����

����

����

� �� �� ��

E
rr

or
 E

ne
rg

y 
/ S

ig
na

l E
ne

rg
y

Fault Rate (% of FLOPS)

Accuracy of IIR - 1000 Iterations

Base SGD,LS SGD+AS,LS SGD+AS,SQS

Figure 7: Error-to-Signal ratio for different implementa-
tions of IIR as a function of fault rate (Lower is better)

�

��

��

��

��

���

� �� �� �� �� �� ��

S
uc

ce
ss

 R
at

e 
(%

)
Fault Rate (% of FLOPs)

Accuracy of Matching - 10000 
Iterations

Base SGD, LS SGD+AS, LS SGD+AS, SQS

Figure 8: Success rate for different implementations of Bi-
partite Graph Matching as a function of fault rate

To calculate the energy benefits from application robus-
tifcation, a model for voltage versus error rate of the FPU is
needed. Figure 4 represents the relationship between volt-
age and error rate for the FPU that was used for our energy
calculations. The results were generated using circuit-level
simulations.

5.2 Gradient Descent
To explore the feasibility of the proposed approach to

provide robustness and energy benefits, we evaluated stochas-
tic gradient descent (SGD) on four problems, Least Squares,
IIR filters, Bipartite Graph Matching, and Sorting across a
wide range of fault rates. We evaluated bothlinear scaling
(LS)of the step size,1t , andsqrt scaling (SQS)of the step
size, 1√

t
, wheret is the number of iterations. We also ex-

aminedaggressive stepping (AS)(see Section 3.2). In our
graphs, SGD refers to a fixed number of iterations, while
SGD+AS refers to the fixed number of iterations with a pe-
riod of aggressive stepping at the end.

The metric used to describe the quality of output is dif-
ferent for each benchmark. For Sorting, the y-axis repre-
sents the percentage of outputs where the entire array is
sorted correctly (any undetermined entries (NaNs), wrongly
sorted number, etc., is considered a failure). For Bipar-
tite Graph Matching, the y-axis represents the percentage
of outputs where all the edges are accurately chosen. For

Least Squares, the quality of output is measured as the rel-
ative difference between the ideal output and actual out-
put. (‖Ax − b‖2 ) For the IIR filter, the quality of output
was measured using the mean square error (MSE) metric,
and the ratio of the error energy and output signal energy.
(‖Y − Yactual‖/‖Y ‖)

We chose small problem sizes for our evaluations due to
low FPGA-based simulation speeds and the need to manu-
ally orchestrate each experiment (e.g., identify coefficients,
parameters, etc.). For sorting, array size is 5 elements.
For the LSQ problem, A is100 × 10 and B is100 × 1.
Bipartite Graph Matching is performed for a graph with
11 nodes and 30 edges. IIR filter uses a 10-tap filter for
500 input samples. State of the art deterministic applica-
tions are used for each of the application baselines. Sorting
was implemented using the C++ Standard Template Library
(STL). Least Squares was implemented using SVD, QR,
or Cholesky decompositions. IIR was implemented using
a simple procedural routine (Section 4). Bipartite Graph
Matching was implemented using the OpenCV library [2].

Our evaluations were performed for different fault rates.
We define fault rate to be the inverse of the average num-
ber of floating point operations between two faults. Note
that the baseline kernels will not see any errors at very low
fault rates (≤ 0.1), due to the small problem sizes (i.e. not,
enough floating point operations).



�

��

��

��

��

���

� �� �� �� �� �� ��

S
uc

ce
ss

 R
at

e 
(%

)

Fault Rate (% of FLOPs)

Accuracy of Matching - 10000 
Iterations

Non-robust Basic,LS SQS 
PRECOND ANNEAL ALL

Figure 9: The effect of enhancements to gradient de-
scent on the success rate of Bipartite Graph Matching

Examining the results, we see that we are able to achieve
high quality results for both the fragile and the intrinsically
robust applications. Sorting (Figure 5) performs poorly with
linear step size scaling, but with sqrt step size scaling is able
to achieve 100% accuracy even with large fault rates. Least
Squares (Figure 6), on the other hand, performs better with
linear step size scaling. It is also able to get highly accurate
results, within10−6% of the exact value computed offline
with an SVD-based baseline. Similarly, IIR (Figure 7) us-
ing SGD produces several orders of magnitude less error
compared to the baseline procedural IIR implementation.
IIR error reduces further with sqrt step scaling. The ben-
efits of Aggressive Stepping for the applications are most
pronounced for low fault rates (< 1%).

Bipartite Graph Matching (Figure 8) using10000 itera-
tions of SGD showed little performance degradation with
increasing fault rates. However, the maximum success rate
obtained, even using aggressive stepping and step scaling,
was limited to below50%.

5.3 Gradient Descent Variants
Gradient descent fares well at low error rates, but the per-

formance can fall off very rapidly for some applications
and with certain inputs that result in poorly conditioned
objective functions. Here, we examine several techniques
which allow gradient descent to perform consistently better
even at higher error rates. In these tests, 0-50% of floating
point operations are erroneous. In order to reduce the num-
ber of variables, we examine only Bipartite Graph Match-
ing. We also compare the results of gradient descent to that
of the baseline Bipartite Graph Matching routine from the
OpenCV library [2]

5.3.1 Preconditioning

The basic version of gradient descent involves minimiz-
ing the cost function−cTx+ λ[Ax− b]+. Preconditioning
allows us to rewrite the cost function so that gradient de-
scent is solving an easier problem. We perform precondi-
tioning by taking the QR decomposition to get an orthogo-
nal matrix Q and a right triangular matrix R such thatA =

QR. The cost function can then be rewritten as−cTx +
λ[QRx − b]+. Defining the newy asy = Rx, allows us
to then rewrite our cost function as−cTx + λ[Qy − b]+.
We also need to find acnew such thatcTnewy = cTnewRx =
cTx. This gives uscTnewR = cT which can be rewritten as
RT cnew = c. This allows us to solve forcnew. Gradient
descent can then be used to minimize−cTnewy+λ[Qy−b]+.
After finding they that minimizes the cost function, solving
Rx = y for x, gives us the answer to the original problem.

Figure 9, shows that the basic gradient descent performs
worse than the non-robust Bipartite Graph Matching algo-
rithm at low error rates (< 5%). Once preconditioning is
performed, gradient descent is able to achieve an accuracy
comparable to the non-robust version for up to a2% fault
rate. SGD, with preconditioning, substantially outperforms
the non-robust Bipartite Graph Matching fault rates above
2%.

5.3.2 Momentum

We also examined the use of a momentum of0.5, so
that the search direction for iterationt, can be expressed as
d(t) = 0.5∗δf(t)+0.5∗d(t−1). For the Sorting problem,
utilizing momentum improved the success rate20 − 40%
relative to the basic gradient descent. However, the addition
of momentum provided only a marginal benefit (< 5%), for
Bipartite Graph Matching. For both applications, the suc-
cess rate was still well below100%.

5.3.3 Alternate Step Size Scaling

Baseline gradient descent scales the step size as1

t , where
t is the number of iterations executed so far. In later itera-
tions, this may cause the step size to be so small that insuffi-
cient progress is made per iteration. We thus examine scal-
ing the step size more slowly, as1√

t
. Again, utilizing step

scaling we see some improvement in performance relative
to the basic gradient descent. However, the solver success
rate continues to be less than40%.

5.3.4 Annealing

The contribution of the penalty function (corresponding
to the constraints) to the gradient calculation can impede
progress towards the solution, especially if these constraints
are poorly scaled compared to the actual objective. This can
be mitigated by annealing the penalty parameter (α). The
parameterα is periodically increased as the solver moves
closer towards the minimum. As we see in Figure 9, using
annealing provides substantial benefits. It achieves a 88%
success rate even with roughly half of the floating point op-
eration containing noise.

5.3.5 All Enhancements

While incorporating annealing in the penalty function cal-
culation provides the most benefit of any individual tech-



nique, gradient descent can perform even better if we uti-
lize all of the above techniques together. In fact, utilizing
all of these techniques, stochastic gradient descent is able to
achieve a 100% success rate even when there are fault rate
is scaled to50%.

5.4 Conjugate Gradient
While stochastic gradient descent-based techniques pro-

vide high robustness, it often comes at the expense of signif-
icantly increased runtime due to the large number iterations
required for convergence. The Conjugate Gradient method,
on the other hand, allows efficient generation of conjugate
directions by taking a linear combination of the negative
residual (which is simply the steepest descent direction) and
the previous direction. In general, the CG method can guar-
antee convergence in at mostn iterations for aAx = B
problem wheren is the dimension ofx. Figure 10 shows
the accuracy of output for our CG-based implementation of
the Least Squares problem, when using 10 iterations of CG.
We consider three baseline implementations (SVD, QR, and
Cholesky Decompositions). The SVD based solver allows
for the highest accuracy, even with ill-conditioned prob-
lems. The Cholesky based solver is the fastest baseline im-
plementation but can only be used for a subset of problems.
The QR-based implementation is slower than Cholesky-based
implementations, but is also more accurate.

Experimentally, the CG implementation was on average
30% faster than the QR/SVD baselines. And10 iterations
of the CG were comparable to the execution time of the
Cholesky baseline.

The relatively small time of convergence allows CG-based
implementations of the LSQ problem to have lower energy
than the baseline implementations for the entire range of ac-
curacy targets when voltage overscaling is used (accuracy
targets lower than 1.00E-07 can’t be met using CG). This is
because it becomes possible to scale down the voltage and
the number of iterations concurrently. Figure 11 shows the
normalized energy results for the FPU for the Least Squares
problem assuming the voltage / error rate curve from Fig-
ure 4. The results show that there is considerable poten-
tial for using the proposed numerical optimization-based
methodology to reducing the energy of software execution
by voltage overscaling a processor and then letting the ap-
plications tolerate the errors.

6. LIMITATIONS AND FUTURE WORK
There are several simplifying assumptions that the above

methodology makes. For example, certain control phases of
execution are assumed to be error-free. While the assump-
tion may be reasonable for a large class of data-intensive
applications (such as the ones presented in the paper) where
the control phases of the stochastic implementation can be
identified and protected using software and hardware tech-

niques (e.g., increasing the voltage during control phases),
it may be difficult to distinguish between data and control
phases for more complex applications. Our future work will
explore the effectiveness of the proposed methodology for
a larger class of applications.

Second, it may not be uncommon for an iterative method-
ology such as ours to have higher overall energy consump-
tion than the baseline implementation for certain applica-
tions because of the larger number of operations required
for convergence. In fact, we observed that the number of
floating point operations required by our applications could
be up to 10-1000X higher than that for the baseline imple-
mentations. Note, however, that it is not an indictment of
the proposed approach as the energy benefits depend greatly
on optimization engine chosen for solving the stochastic
optimization problems. Our future work will attempt to
identify the most appropriate optimization engine for the
stochastic implementation of each problem. Finding ways
to decrease the number of iterations required for conver-
gence will also be key in making this methodology more
useful.

Additionally, future work will involve investigating the
robustness of the proposed methodology for different fault
models. Note that the ultimate feasibility of the proposed
approach will be determined also by issues related to schedul-
ing, runtime management, programmer annotations to iden-
tify critical variables, automation of the program transfor-
mation flow, competitiveness against guardbanding, etc. These
issues are the subject of future work.

7. CONCLUSION
Environmental and manufacturing variations coupled with

reduced guardbands can cause timing errors in processors.
Rather than utilizing hardware approaches to detect and mask
these errors, in this paper, we propose to allow these timing
errors to occur and to cope with them in software. We pro-
posed a formal methodology to make applications robust
against the noise of such processors. The methodology con-
sists of recasting the application as an optimization prob-
lem and applying off-the-shelf stochastic optimization pro-
cedures to find the solution. To the best of our knowledge,
this is the first work on a generic methodology to trans-
form application code for timing error tolerance geared at
both fragile and intrinsically robust applications. Experi-
ments on an FPGA show that the proposed methodology
indeed has potential to tolerate noise in a processor’s nu-
merical units under certain simplifying assumptions. Re-
sults show that the proposed methodology may be capable
of producing high quality results for both intrinsically ro-
bust algorithms such as IIR filter and Least Squares, and
for fragile applications such as Sorting and Bipartite Graph
Matching. Moreover, we showed that energy benefits may
also be possible for certain applications/inputs (e.g. when
using a CG-based solver for the Least Squares problem).



��������

��������

��������

��������

� �� 	� �� 
�

R
el

at
iv

e 
E

rr
or

 w
.r.

t I
de

al

Fault Rate ( % of FLOPs)

Accuracy of Least Squares
Base: QR Base: SVD Base: Cholesky CG, N=10

Figure 10: Accuracy for a CG-Based implementation of
Least Squares (10 iterations)

0.00E+00

5.00E+04

1.00E+05

1.50E+05

1.00E-07 1.00E-05 1.00E-03 1.00E-01E
ne

rg
y 

( 
P

ow
er

* 
# 

of
 F

LO
P

)

Accuracy Target

Least Squares Energy
Base: Cholesky CG

Figure 11: Energy for a CG-Based implementation of
Least Squares

Future work will focus on evaluating and mitigating costs
of the proposed approach.

8. ACKNOWLEDGMENTS
This work was supported in part by Intel, NSF, GSRC,

and an Arnold O. Beckman Research Award. Feedback
from Naresh Shanbhag, Doug Jones, and anonymous re-
viewers helped improve this paper.

9. REFERENCES

[1] International Technology Roadmap for Semiconductors 2008,
http://public.itrs.net.

[2] The OpenCV Library, http://http://opencv.willowgarage.com/wiki/.
[3] A. Kahng, S. Kang, R. Kumar and J. Sartori. Designing a processor

from the ground up to allow voltage/reliability tradeoffs.In IEEE
International Symposium on High-Performance Computer
Architecture(HPCA), January 2010.

[4] J. Sartori, R. Kumar, S. Kang and A. Kahng. Recovery-driven
design: A methodology for power minimization for error tolerant
processor modules. Inthe 47th Design Automation Conference
(DAC), June 2010.

[5] J. Bau, R. Hankins, Q. Jacobson, S. Mitra, B. Saha, and AdlA.
Tabatabai. Error Resilient System Architecture (ERSA) for
Probabilistic Applications. In The 3rd Workshop on System Effects
of Logic Soft Errors (SELSE), April 2007.

[6] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar.Convex Analysis and
Optimization. Athena Scientific, 2001.

[7] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and
V. De. Parameter variations and impact on circuits and
microarchitecture. InDAC, pages 338–342, 2003.

[8] L. Bottou. Online algorithms and stochastic approximations. In
D. Saad, editor,Online Learning and Neural Networks. Cambridge
University Press, 1998.

[9] R. W. Brockett. Dynamical systems that sort lists, diagonalize
matrices and solve linear programming problems. InLinear Algebra
and Its Applications, volume 146, pages 79–91, 1991.

[10] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A
low-power pipeline based on circuit-level timing speculation. In
MICRO 36: Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture, page 7,
Washington, DC, USA, 2003. IEEE Computer Society.

[11] Aeroflex Gaisler. Leon3 processor, 2008.
[12] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum

flow problem. InACM symposium on Theory of Computing (STOC),
pages 136–146, 1986.

[13] G. Golub and C.F. Van Loan.Matrix Computations. The Johns
Hopkins University Press, 1989.

[14] R. Hegde and N. R. Shanbhag. Energy-efficient signal processing
via algorithmic noise-tolerance, 1999.

[15] N. J. Higham.Accuracy and Stability of Numerical Algorithms,
Chapter 12.SIAM, second edition, 2002.

[16] K. Huang and J.A. Abraham. Algorithm-based fault tolerance for
matrix operations.Computers, IEEE Transactions on,
C-33(6):518–528, June 1984.

[17] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and M. Martonosi. An
analysis of efficient multi-core global power management policies:
Maximizing performance for a given power budget. Inin Proc. Intl.
Symp. Microarch. (MICRO), pages 347–358, 2006.

[18] C. Kong. Study of voltage and process variation’s impacton the
path delays of arithmetic units. InUIUC Master’s Thesis, 2008.

[19] R. Kumar. Stochastic processors. InNSF Workshop on Science of
Power Management, March 2009.

[20] N. Shanbhag, R. Abdallah, R. Kumar and D. Jones. Stochastic
computation. Inthe 47th Design Automation Conference(DAC),
June 2010.

[21] A Nemirovski, A Juditsky, G Lan, and A Shapiro. Robust stochastic
approximation approach to stochastic programming.SIAM Journal
on Optimization, 19(4):1574–1609, 2009.

[22] C. Papadimitriou and K. Steiglitz.Combinatorial optimization:
algorithms and complexity. Dover, 1998.

[23] G. Di Pillo. Exact penalty methods. In I. Ciocco, editor,Algorithms
for Continuous Optimization, 1994.

[24] J. Sartori and R. Kumar. Three scalable approaches to improving
many-core throughput for a given peak power budget. In
International Conference on High Performance Computing, 2009.

[25] J. Sartori and R. Kumar. Overscaling-friendly timing speculation
architectures. InIn the 20th ACM/IEEE Great Lakes Symposium on
VLSI, GLSVLSI, May 2010.

[26] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal
Estimated sub-GrAdient SOlver for SVM. InInternational
Conference on Machine Learning (ICML), 2007.

[27] M. L. Shooman.Reliability of Computer Systems and Networks:
Fault Tolerance,Analysis,and Design. John Wiley & Sons, Inc., New
York, NY, USA, 2002.

[28] V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace
methods and applications to scientific computing.SIAM Journal on
Scientific Computing, 25:454–477, 2003.

[29] D. Blaauw T. Austin, V. Bertacco and T. Mudge. Oppotunities and
challenges for better than worst-case design. InProc. Asia South
Pacific Design Automation, pages 2–7, 2005.

[30] S.J. Wright. On the convergence of the newton/log-barrier method.
Technical report, ANL/MCSP681 -0897, Mathematics and
Computer Science Division, Argonne National Laboratory, 2001.

[31] D.B. Yudin and A. Nemirovskii.Problem Complexity and Method
Efficiency in Optimization. John Wiley and Sons, 1983.


