Adaptive Reliability Chipkill Correct (ARCC)

Xun Jian
University of Illinois at Urbana Champaign
xunjian] @illinois.edu

Abstract

Chipkill correct is an advanced type of error correction
in memory that is popular among servers. Large field stud-
ies of memories have shown that chipkill correct reduces
uncorrectable error rate by 4X [11] to 36X [12] compared
to SECDED. Currently, there is a strong trade-off between
power and reliability among different chipkill correct solu-
tions. For example, commercially available chipkill correct
solutions that can detect up to two failed devices and correct
one (eg. SCCDCD) or two (eg. Double Chip Sparing) failed
devices require accessing 36 DRAM devices per memory
request. However, a weaker single chipkill correct single
chipkill detect solution only requires accessing 18 devices
per memory request and, therefore consumes much lower
memory power. In this paper, we present Adaptive Reliabil-
ity Chipkill Correct (ARCC) - an optimization to be applied
to existing chipkill correct solutions to allow them to incur
the low power consumption of a lower strength chipkill cor-
rect solution while maintaining similar reliability as that of
a stronger chipkill correct solution. ARCC is based on the
observation that, on average, only a tiny fraction of mem-
ory experiences any type of faults during the typical opera-
tional lifespan of a server. As such, it proposes relaxing the
strength of chipkill correct in the beginning and then adap-
tively increasing the strength as needed on a page by page
basis in order to reap the benefit of lower power consump-
tion during the majority of the lifetime of a memory system.
Our evaluation shows that ARCC reduces the power con-
sumption of memory by 36%, on average, when applied to
commercial SCCDCD, while keeping the storage overhead
the same and maintaining similar reliability.

1 Introduction

Chipkill correct is an advanced type of error correction in
memory that significantly improves the reliability of mem-
ory by allowing continued memory operation in the event
of device-level faults in memory. Large scale studies show
that chipkill correct reduces the Detectable Uncorrectable

Rakesh Kumar
University of Illinois at Urbana Champaign
rakeshk @illinois.edu

Error (DUE) rate of memory by 4X [11] to 36X [12] com-
pared to Single Error Correction, Double Error Detection
(SECDED). As a result, chipkill correct memory systems
have become very popular among HPC systems and high
end servers with large memory capacities. As the amount of
memory in servers continue to increase, we envision that the
adoption of chipkill correct memory systems will become
even more widespread in order to maintain the same level
of DUE and silent data corruption (SDC) rates in memory.

Currently, there is a strong trade-off between power and
reliability among different chipkill correct solutions. Com-
mercial chipkill correct solutions, such as single chipkill
correct double chipkill detect (SCCDCD) [1] and Double
Chip Sparing [5, 8], can detect up to two failed DRAM de-
vices per rank; however, they require accessing 36 DRAM
devices per memory request. On the other hand, a weaker
solution that can only detect and correct up to a single failed
device requires accessing only 18 DRAM devices (see Sec-
tion 2); since only half as many devices are accessed per
request, significant memory power can be saved. Similar
trend exists for newly proposed chipkill correct solutions
such as LOT-ECC [13] and VECC [15].

In this paper, we aim to improve on the present power
and reliability trade-off of chipkill correct memory solu-
tions. We observe that all existing chipkill correct solutions
have a fixed level of protection strength from the start re-
gardless of the age of the memory system; however, due
to the low occurrence rate of faults in modern DRAM de-
vices, our calculations, based on a large scale field study of
over 160,000 DIMMs [12], show that on average only a tiny
fraction of memory experience any type of faults in a typical
operational lifespan of 5 to 7 years [9]. Therefore instead of
a fixed worst case design, we propose an average case de-
sign where the memory system begins with low strength of
protection, which consumes low power, and only upgrades
to higher strength(s) of protection, which consumes high
power, on a page by page basis as the pages become af-
fected by faults. We call this optimization to be applied to
chipkill correct solutions Adaptive Reliability Chipkill Cor-
rect (ARCC). By increasing the chipkill correct strength of
faulty pages at the end of every memory scrub, which can be

performed once every few hours [12], ARCC offers similar
reliability as always using a strong chipkill correct solution
for all the pages (see Section 6).

In this paper, we focus on applying ARCC to commer-
cial chipkill correct solutions. Our evaluation shows that
ARCC reduces the power consumption of memory by 36%
when applied to commercially available chipkill correct so-
lutions, while keeping the same storage overhead and main-
taining similar reliability. We will also briefly describe how
to apply ARCC to newly proposed chipkill correct solutions
such as LOT-ECC and VECC.

We make the following contributions in the paper:

1. The concept of applying a weaker but more energy ef-
ficient ECC for regions in the main memory that are
fault free, and dynamically increasing ECC strength of
a region in the main memory after detecting faults in
the memory region.

2. An efficient implementation of the concept, where ad-
jacent smaller codewords combine to form larger code-
words after faults are detected in a page, which allows
ECC strength to be increased without increasing the
storage overhead.

3. Comparative evaluation of the power, performance,
and reliability of the above implementation relative
to commercial chipkill correct solutions. Our exper-
iments show that ARCC reduces memory power by
36% when applied to commercial chipkill correct so-
lutions with negligible degradation to reliability.

The rest of the paper is organized as follows. Section 2
describes the relevant background and related work. Sec-
tion 3 provides the motivational data for ARCC. Section 4
describes the application of ARCC to commercial chipkill
correct solutions in detail. Section 5 describes the appli-
cation of ARCC in other contexts. Section 6 considers the
reliability implications of applying ARCC to commercial
chipkill correct solutions. Section 7 describes the experi-
mental set-up used in the results section, Section § presents
the experimental results. Finally, Section 9 concludes the

paper.
2 Background and Related Work

2.1 Commercial Chipkill Correct Solu-
tions

Chipkill correct memory systems are designed to guar-
antee error correction and detection even in the event of
a complete device failure in a rank, which is a group of
DRAM devices needed to serve a single memory request.
SCCDCD [1] and Double Chip Sparing [5, 8] are two pop-
ular commercial chipkill correct solutions. SCCDCD can

DRAMRank: [D1 || D2]| == [R1]||R2]IR3]||R4

CodeWord: [ps 1|DS_ 2| |cS1]Cs2]Cs3 |csal

Figure 1. In commercial chipkill correct so-
lutions, each symbol is stored in a different
device in the rank. The ”D” boxes represent
data devices while the ”"R” boxes represent
redundant devices.

correct one failed device and detect up to two failed de-
vices. Double Chip Sparing can correct up to two failed
devices as long as the two faults don’t occur before one of
them is first detected. Both solutions rely on symbol-based
linear block codes to perform error detection and correc-
tion. In a symbol-based linear block code, each codeword
is composed of multiple symbols, which are groups of bits;
the symbols are categorized into data symbols and check
symbols, which are the redundant information needed for
error detection and correction [15]. The larger the number
of check symbols per codeword, the higher the strength of
error detection and correction. For example, with 2 check
symbols per codeword, a bad symbol in the codeword can
be detected and corrected [3]; however, when there are only
2 check symbols per codeword, if 2 bad symbols exist in
the same codeword, the error can go undetected. With 4
check symbols per codeword, depending on the exact type
of code employed, the second bad symbol in the codeword
can either be detected or even be corrected [15].

Figure 1 illustrates how commercially available chipkill
correct solutions store the symbols of each codeword. They
store each symbol of a codeword in a different device in
the rank. As a result, even in the event of a complete de-
vice failure, only a single symbol is lost per codeword; the
lost symbol can be recovered using the remaining data sym-
bols and check symbols in the codeword. Both SCCDCD
and Double Chip Sparing use 4 check symbols per code-
word. Although only 3 check symbols are required to pro-
vide single symbol correct and double symbol detect, SC-
CDCD uses a somewhat inefficient encoding such that all 4
check symbols are needed to provide the same level of pro-
tection [15]. On the other hand, Double Chip Sparing uses
a more efficient encoding where only 3 check symbols are
required to provide single symbol correct and double sym-
bol detect. When a bad symbol is detected, the bad symbol
is remapped to a spare symbol, the 4" symbol. This al-
lows Double Chip Sparing to correct up two bad symbols
per codeword, as long as the second bad symbol does not
occur before the first has been detected.

Since each symbol in a codeword has to be stored in its
own DRAM device as illustrated by Figure 1, there has to

be as many redundant devices as there are check symbols
per codeword. In order to keep the ratio of the number of
redundant devices to regular data devices in a rank low, the
number of data devices in the rank is chosen to be large. To
keep the storage overhead the same as SECDED, commer-
cially available chipkill correct solutions use 32 data sym-
bols and 4 data symbols per codeword, resulting in a storage
overhead of 12.5%; this translates to a rank with a total of
36 devices. Since such a large number of devices (36 com-
pared to only 9 for SECDED) have to be accessed per mem-
ory request, commercial chipkill correct solutions consume
high power.

2.2 Recently Proposed Chipkill Correct
Solutions

Other chipkill correct solutions have been recently pro-
posed that reduces the rank size via various trade-offs. For
example, VECC [15] reduces the rank size of chipkill cor-
rect memory systems from 36 to 18 by reducing the num-
ber of data symbol per codeword from 32 to 16 and thus
increasing the storage overhead beyond 12.5%. Since com-
modity ECC DIMMs with a rank size of 18 only support 16
data devices and 2 redundant devices, VECC stores the 2
check symbols needed for error detection in the redundant
devices and maps the remaining check symbol(s) needed
for error correction to the data devices in a different rank
via the page table. For read accesses that do not contain
errors, only 18 devices are accessed under VECC. For read
accesses that contain errors, 36 device-accesses are required
since the memory needs to be accessed a second time to re-
trieve the corresponding error correction check symbols if
the check symbols are not already in the Last Level Cache
(LLC). Similarly, for write requests, 36 device-accesses are
required to update the error correction check symbols stored
in memory if they are not found in the LLC.

Instead of relying a single code, LOT-ECC uses a combi-
nation of different codes for error detection and correction.
For every line in memory, the data stored in each device
is protected by a one’s complement checksum stored in the
same device for error detection and localization. In addi-
tion, the memory also stores the xor value of the data stored
in each device. When an error is detected and localized to
a single device, the lost data in the device can be recon-
structed using the xor value. LOT-ECC reduces the number
of devices required per rank down to 9. However, compared
to commercial chipkill correct, LOT-ECC also requires a set
of trade-offs. For example, the storage overhead of LOT-
ECC is increased from 12.5% to 26.5%. In addition, LOT-
ECC requires additional write accesses to memory for each
write to memory to update the error correction resources.
Since roughly 80% of the writes, on average, require ad-
ditional writes to memory [13], this can lead to significant

reduction in bandwidth for write-intensive workloads. Fi-
nally, LOT-ECC also lowers the error detection/correction
guarantee of chipkill correct compared to commercial chip-
kill correct solutions because the one’s complement check-
sums used for error detection in LOT-ECC can only guar-
antee detection of device-level faults if the output from a
device with a device-level fault are all 1’s or 0’s. Examples
of device-level faults in DRAM devices that do not result
in an all stuck-at-1 or O output include faulty row or col-
umn address decoders that lead to the wrong row or column
being read out.

ARCC can also be applied to both VECC and LOT-ECC,
as will be briefly explained in Section 5. However, due to
the wide adoption of commercial chipkill correct solutions,
we will focus our evaluation on the application of ARCC to
commercial chipkill correct solutions.

2.3 Other Related Work

PAYG [9] is a PCM-based scheme that relies on the
observation that only a small fraction of lines suffer from
many failed bits in PCMs; as such, instead of statically al-
locating a large number of error correction pointers to every
line, one can rely on a small global pool of error correc-
tion pointers that are dynamically allocated to bad lines as
needed to achieve similar lifetime at only a fraction of the
total storage overhead.

Our goal and implementation are different — ARCC re-
duces the overall power consumption of chipkill correct by
adaptively increasing the ECC strength of bad pages by
combining adjacent lines in those pages into larger and,
therefore, more power hungry lines with stronger ECC pro-
tection, while keeping the lines in error-free pages small
with weaker ECC protection.

3 Motivation

There is a fundamental trade-off between power and re-
liability in chipkill correct solutions, when the storage over-
head is held constant. Increasing the amount of ECC bits
per word improves the error correction/detection capability
of the codeword; however, this increases the storage over-
head of the ECC bits. In order to keep the storage over-
head the same while increasing the amount of ECC bits per
word, the number of data bits in the word has to be increased
as well; this in turn increases memory power consumption
since more devices have be to accessed per memory request.
Consider for example a memory configuration consisting of
a single channel with 2 ranks and 36 devices per rank. If we
were to reduce the number of check symbols per codeword
from 4 down to 2, the size of a rank can be reduced from 36
down to 18 without affect the storage overhead. Our mo-
tivational experiments using quad-core multiprogrammed

SPEC benchmarks show that having a rank size of 18 in-
stead of 36 reduces memory power consumption by 36.7%
on average. However, the downside of using only 2 redun-
dant check symbols is that it only guarantees the detection
of a single bad symbol per codeword; the reliability that it
provides is significantly worse than using 4 redundant check
symbols per codeword as does commercial chipkill correct
solutions, which guarantee detection of up to 2 bad sym-
bols per codeword. ARCC is an optimization that seeks to
improve the power-reliability trade-off between a stronger
chipkill correct solution with more ECC bits per codeword
and a weaker chipkill correct solution with fewer ECC bits
per codeword by offering similar reliability as the former
while consuming similar power as the latter.

Intuitively, pages with a fault can benefit much from dou-
ble symbol detection/correction per codeword, because if
an additional bad symbol occurs in a codeword that already
contains a bad symbol, the second bad symbol can still be
detected/corrected via double symbol detection/correction.
On the flip-side, if a page is completely fault free, the
added value of double symbol detection/correction com-
pared to only single symbol detection/correction is signif-
icantly smaller; for these pages, using 2 symbols per code-
word might suffice. Our reliability analysis in Section 6
confirms this intuition; it shows that adaptively upgrading
codewords from single symbol protection to double symbol
protection as the codewords become affected by faults in-
curs negligible reliability degradation compared to always
applying double symbol protection to every codeword.

Meanwhile, large field studies have shown that only
2.95% [12] to 8% [11] of DIMMs suffer any type of faults
per year. Also, most of these faults affect a small fraction
of the DIMM (such as the single-bit and row faults). By
considering the different types of faults studied in [12] and
making the worst case assumption that each type of device-
level fault considered in the work results in every mem-
ory location under the device-level circuitry becoming cor-
rupted, we calculated the average fraction of 4KB physical
pages in a memory channel that contain one or more faulty
locations. The channel consists of 2 ranks with 36 devices
per rank. Figure 2 shows that the fraction of pages with
fault is just a few percent during most of the lifetime of the
memory channel, even for a worst case failure rate that is
4X as high as what was measured in [12]. Since fault free
pages can be protected using only 2 symbols per codeword
instead of 4 and since most pages are fault free, an adap-
tive approach that provides weaker protection for a page
in the beginning and only upgrades the protection strength
when the page contains a fault can lead to substantial power
savings with similar reliability as always providing stronger
protection.

12.00%

» - 1XFit Rate
O 10.00% -+-2XFit Rate
g)g - 4XFit Rate
& & 500%
©
8 >
,2 2 6.00%
4w O
cg 4.00%
c o™
oL
pr=
0 2.00%
e <
S
e 0.00%
1 2 3 4 5 6 7
Years

Figure 2. Average fraction of 4KB pages in
a memory channel that has been affected by
faults for different operational lifespans.

4 Adaptive Reliability Chipkill Correct

ARCC reactively increases the strength of protection of
every codeword in a page when the page is detected with a
fault by doubling the number of check symbols per code-
word. Conceptually, ARCC does so by joining two code-
words stored in two separate memory channels into a single
large codeword, which, therefore, has twice the number of
check symbols but the same storage overhead as the smaller
codewords. In Section 4.1, we describe in detail how to ap-
ply ARCC to commercial chipkill correct solutions to pro-
vide similar reliability as always using 4 check symbols per
codeword while incuring the low memory power consump-
tion of using only 2 check symbols per codeword.

4.1 Applying ARCC to Commercial Chip-
kill Correct Solutions

We refer to a physical page where there are 4 check sym-
bols per codeword as an upgraded page and a page where
there are only 2 check symbols per codeword as a relaxed
page. The top half of Figure 3 shows the data layout of
a relaxed page. In the figure, there are 2 memory chan-
nels in the memory system, where each memory channel
can serve a memory request for a 64B line independently.
We consider a common memory configuration where each
physical page contains 4KB of data, which is equivalent to
64 64B lines. Conventional physical address mapping poli-
cies (e.2. SDRAM_BASE_MAP, SDRAM _HIPERF_MAP,
SDRAM_CLOSE_PAGE_MAP [14]) deployed in systems
with multiple memory controllers map adjacent 64B lines
to different memory channels in order to reduce the latency
of accessing adjacent lines in memory; this is reflected in
Figure 3, where alternate lines belong to alternate memory
channels (X and Y). Each 64B line, in turn, consists of mul-
tiple codewords; in the example in Figure 3, each line con-
sists of 4 codewords, which are delimited by the horizontal

lines in the figure; each codeword is composed of 16 data
and 2 check symbols, which are represented by the shaded
region. Since each symbol maps to a different DRAM de-
vice in commercial chipkill correct solutions, the 18 sym-
bols of a codeword in a relaxed page are stored across 18
DRAM devices controlled by the same memory controller.

When an error is detected during memory scrubbing,
ARCC increases the protection strength of the page with
error by increasing the number of check symbols per code-
word from 2 to 4. To double the number of check symbols
per codeword without increasing the check to data symbol
ratio which increases storage overhead, ARCC combines 2
adjacent 64B lines, each stored in separate channel, in a
page into a single 128B line, referred to as an upgraded line
from now on, where each codeword in the 128B line con-
tains 4 check symbols and 32 data symbols. To convert a
relaxed page into an upgraded page, all lines in the relaxed
page are read out to compute the new codewords in each line
and are stored back to memory afterwards. Note that since
the two 64B lines in each upgraded line belong to 2 separate
memory channels, the entire upgraded line can be read out
in the time it takes to read a single 64B line by accessing
the two memory channels in parallel. The bottom half of
Figure 3 illustrates one way of combining 2 adjacent 64B
lines into an upgraded line, where each symbol maintains
its original size and the number of codewords per upgraded
line is the same as the number of codewords per line under
the relaxed mode. An alternative design is to reduce the size
of each symbol by half and as a result, double the number
of codewords per upgraded line. This flexibility is impor-
tant since different symbol sizes require different types of
error detection and correction (EDAC) controllers; by pro-
viding this flexibility, ARCC provides freedom in choosing
the EDAC controller to use for the upgraded line.

4.2 Implementation Details

The following sections describe the different modifica-
tions needed to support ARCC as well as the associated
overheads.

4.2.1 Page Table

Each physical page entry and the corresponding TLB entry
is modified to contain an additional 1-bit flag to indicate
the chipkill correct strength, relaxed or upgraded, the page
currently operates in. The value of the flag is updated at
the end of a memory scrub. If the memory scrubber detects
an error in a physical page, the chipkill correct strength of
the physical page is to be upgraded. To upgrade a page
affected by faults, only the page itself needs to be accessed
to recalculate each upgraded line in the page; pages without
faults are not affected. When an upgraded physical page

— 0
Relaxed — i EH
1X 1 2Y 3X14Y 163X64Y

Il Il 1]

Upgraded @ @ @
1X 2Y 3X 4Y 63X 64Y
Line1 iLine2 iLine 32

Figure 3. Data layout of a physical page in re-
laxed and upgraded chipkill correct modes.
The letters ’X’ and 'Y’ appended after each
line number indicate to which channel the
line belongs. Each shaded rectangle repre-
sent a check symbol in a codeword. The line
with the cross contains a fault, which causes
the page to be in upgraded.

is accessed, both 64B lines in each upgraded line will be
accessed.

We assume that the OS is started up in the upgraded
mode for every page. After the page table has been pop-
ulated, a memory scrub is immediately performed to deter-
mine the fault-free pages to set them to relaxed mode.

4.2.2 Memory Scrubbing

ARCC upgrades the chipkill correct strength of a page af-
ter faults are detected in a page during memory scrubbing.
Our reliability analysis in Section 6 assumes an ideal mem-
ory scrubber that is capable of detecting all faults at the end
of each memory scrub. A conventional memory scrubber
which simply reads out and writes back the memory con-
tent during each scrub may leave many hidden stuck-at-1 or
stuck-at-0 faults undetected. Therefore, to adhere closely to
such an ideal memory scrubber, we modified a conventional
memory scrubber to execute the following steps:

1. Read a line and store its value aside.

2. Write all 0’s to the line location in memory and then
read the location in memory to see if only 0’s are re-
turned. If true, go to step 3. If false, a stuck-at-1 fault
may be present; go to step 4 and upgrade the page af-
terwards.

3. Write all 1’s to the line and then read the line to see if
only 1’s are returned. If true, go to step 4. If false, a
stuck-at-0 fault may be present; go to step 4 and up-
grade the page afterwards.

4. Correct any errors in the original content of the line
and write the line back to memory.

Optionally, in order to reduce the overhead of alternating
between reads and writes during a memory scrub, steps 1 to

4 can be performed in batches for multiple consecutive lines
at a time.

Although memory scrubbing is twice more expensive
in ARCC (due to the 2 additional reads and writes for all
0’s and all 1’s) compared to conventional memory scrub-
bing, the performance overhead of memory scrubbing is
still negligible since memory scrubbing takes a few seconds
per memory channel while it is performed once every few
hours [12]. Consider, for example, a 128-bit wide memory
channel with 4GB of 667MHz DDR2 memory. Accessing
the entire memory content takes 4 - 10243 - 8/128/(667 -
10%) = 0.4s. A memory scrub required by ARCC takes
0.4-6 = 2.4s per memory scrub. Assuming a memory scrub
rate of once 4 hours, 2.4s/(4-3600) results in only 0.0167%
reduction in maximum effective memory bandwidth.

4.2.3 Last Level Cache

The LLC needs to be modified in order to accommodate
both the relaxed 64B lines and the upgraded 128B lines in
the LLC simultaneously; during a write to memory, both
sub-lines of an upgraded line need to be written back to
memory at the same time in order to update all 4 check
symbols in each codeword in the upgraded line. One way
to accommodate both 64B and 128B lines in the LLC is to
implement the LLC as a Sectored Cache [10]. However,
since the Sectored Cache can degrade the effective size of
the cache when there is low spatial locality in the applica-
tions, we propose an alternative LLC design to accommo-
date the two different cacheline sizes.

We observe that since the physical addresses of the two
sub-lines in an upgraded line are consecutive, the two sub-
lines will be mapped to 2 adjacent sets in a conventional
LLC with 64B cachelines. We propose including an addi-
tional bit to the tag of each cacheline to indicate whether
or not the cacheline belongs to an upgraded line. When an
upgraded line is brought into the LLC, the flag is set to 1.
When a line is selected for eviction, its flag is checked to see
if it is a sub-line of an upgraded line; if it is, the 2"d sub-
line of the same upgraded line can be found in the adjacent
set as the line with the same tag. In order to prevent a sub-
line from being forcefully evicted due to the lack of reuse
in the second sub-line, the LLC cache replacement policy
uses the recency of the most recently used sub-line as the
recency value of both sub-lines for eviction selection.

The main overhead in the cache is due to the fact that
cache replacement requires a second tag access to find the
recency value of the other sub-line in an upgraded line. The
performance overhead of this second tag access is small be-
cause LLC replacements are required only by LLC misses,
which are less frequent that LLC hits. In addition, the la-
tency of the second tag access is much smaller than that of
the memory access due to the LLC miss. In our experi-

ments, we modified the cache implementation such that ev-
ery cache replacement takes twice as long and did not ob-
serve any noticeable effect on performance.

4.2.4 Memory Controller

The two sub-lines in each upgraded line have to be read
from and written to memory at the same time in order to
provide error detection/correction. One design is to log-
ically partition the memory queue of each controller into
two, one for the sub-lines of upgraded lines and one for the
relaxed lines. The sub-line queue maintains a strict FIFO
ordering to ensure that the pairing of the sub-lines in each
queue is always correct. The memory controllers can then
alternatingly issue requests from the queue for the sub-lines
and the queue for the regular 64B lines.

An alternative design is to augment each memory queue
entry with a new flag with multiple bits. The first bit of the
flag is set to 1 to indicate that the line is a sub-line of an
upgraded line. When the first bit is set to 1, the remaining
bits in the flag serve as a pointer to the physical queue entry
in the other memory channel where the 2" sub-line resides.
When a sub-line is at the head of the memory access queue,
memory access in the queue is stalled until the 2" sub-line
is found. The corresponding sub-line in the second memory
channel is to be found via the pointer and then promoted
to the head of its memory access queue so that the pair of
sub-lines can be issued together.

Due to the large number of devices per rank (36), com-
mercial chipkill correct solutions require 2 physical mem-
ory channels, each controlling 18 devices, to operate in
lockstep as a single logical channel [13]. As a result, a
single EDAC controller targeting codewords with 4 check
symbols is sufficient for every pair of memory controllers.
However, ARCC requires an additional EDAC controller
for each memory controller to target codewords with 2
check symbols.

S Applying ARCC to Other Contexts

ARCC is a versatile optimization that can be applied to
different contexts to provide the reliability of a stronger
chipkill correct solution while consuming the same mem-
ory power as a weaker chipkill correct solution. In the fol-
lowing sections, we briefly describe various other contexts
where ARCC is applicable.

5.1 Enabling Stronger Forms of Chipkill
Correct

ARCC can be used to support even stronger strengths of
chipkill correct than what is commercially available with-
out requiring the design of new ECC DIMMs. Consider,

for example, when ARCC is applied to Double Chip Spar-
ing [4, 8], which can correct up to 2 bad symbols per code-
word with 4 check symbols per codeword. When a code-
word under the upgraded mode develops a second bad sym-
bol, all the codewords in the page that contains the affected
codeword can be further upgraded to an even stronger up-
graded mode of having 8 check symbols per codeword by
striping each codeword across 4 memory channels instead
of just 2. This provides each codeword in the page with 4
additional spare symbols to remap bad symbols to. An al-
ternative design is to divide the large codeword with 8 check
symbols into 2 smaller codewords each with 4 check sym-
bols and remap the the 2 bad symbols such that they are
divided equally between the 2 smaller codewords, so that
each smaller codeword can correct yet another bad symbol
when it occurs in the future. Since only a small fraction of
memory that are affected by one bad symbol is also affected
by a second bad symbol, the number of pages in the second
upgraded mode should be only a tiny fraction of the pages
in the first upgraded mode. As a result, ARCC can pro-
vide multiple upgraded modes with similar power and per-
formance characteristics as having just one upgraded mode.

5.2 Applying ARCC to VECC and LOT-
ECC

ARCC can also be used to support recently proposed
chipkill correct solutions such as LOT-ECC and VECC.

To provide double chipkill correct, VECC uses 4 check
symbols per codeword [15]. Instead of always using 4
check symbols per codeword, ARCC can be applied to
VECC to reduce the number of check symbols per code-
word in a page to 2 when the page is fault free. As a result,
ARCC can reduce the number of devices per rank from 18
(see Section 2) to 9 (8 data devices and 1 redundant de-
vice for the 1 detection check symbol) while maintaining
the same storage overhead as VECC to reduce power con-
sumption.

The LOT-ECC configuration described in [13] that uses
9 devices per rank is only capable of correcting a single
bad symbol, as does SCCDCD, but not two bad symbols,
as does Double Chip Sparing. However, we observe that
LOT-ECC can be extended to provide Double Chip Sparing
by using 18 devices per rank without increasing the stor-
age overhead. In the 18-device configuration, the data of a
line is stored evenly across 16 devices, while the 17th de-
vice stores the xor value of the symbols in the 16 data de-
vices and the 18" device is the spare device to which the
correct value of the bad symbol is remapped. The one’s
complement checksums needed for error detection and lo-
calization (see Section 2) are to be stored in a different line
in the same row. However, the 18-device configuration in-
curs high power overhead in two ways. First, it requires ac-

cessing twice as many devices per memory request as the 9-
device configuration. Second, due to the fact that the one’s
complement checksums needed for error detection are now
stored in a different line than the data, the 18-device ARCC
also requires an additional read access to the checksum line
for every read to memory in addition to the additional write
access per memory writeback (see Section 2). ARCC can
be used to dynamically convert a relaxed page that uses 9-
device LOT-ECC to an upgraded page that uses 18-device
LOT-ECC when errors are detected in the page. By apply-
ing ARCC to LOT-ECC to provide Double Chip Sparing,
ARCC can reduce the DUE rate of LOT-ECC by 17X [4] at
a small power overhead (see Section 8), since only a small
fraction of pages, on average, have faults in memory and,
therefore, need to operate in the upgraded mode.

6 Reliability Analysis

In this section, we explore the reliability impact of ap-
plying ARCC to commercial chipkill correct solutions.

6.1 Impact on DUE Rate

ARCC does not degrade the DUE rate of commercial
chipkill correct solutions. When ARCC is applied to SC-
CDCD, ARCC does not degrade the DUE rate since ARCC
always guarantees correction of a single bad symbol in a
codeword, just as SCCDCD. ARCC also does not degrade
the DUE rate when it is applied to Double Chip Sparing,
which corrects up to two bad symbols per codeword. This
is because just like ARCC, Double Chip Sparing cannot
correct the second bad symbol unless the first bad symbol
has been detected before the second bad symbol occurs (see
Section 2).

6.2 Impact on SDC Rate

In the ARCC implementation described in Section 4.1,
each codeword contains only 2 check symbols at the begin-
ning, which only guarantees the detection of a single bad
symbol. After an error is detected in a page (which results
in at most one bad symbol per codeword), ARCC reactively
increases the number of check symbols per codeword to 4
by doubling the size of each codeword in the page in order
to be able to detect 2 bad symbols per codeword. How-
ever, it is possible for a second bad symbol to occur in the
same codeword before the first bad symbol is detected; such
errors cannot be detected. On the other hand, commercial
chipkill correct solutions constantly allocate 4 check sym-
bols per codeword, and, therefore, always guarantee the de-
tection of 2 bad symbols. However, the probability of 2 or
more faults in 2 or more different devices affecting the same

1.000

" 11X Fit DED

§ . _ 77y [1XFit DED (Monte Carlo)

> B 1X Fit ARCC DED

Q@ 0.100 2 1X Fit ARCC DED (Monte Carlo)
5 - || 2X Fit DED

<§U is N 2X Fit DED (Monte Carlo)

p N 11 2X Fit ARCC DED

g 0010 N m 2X Fit ARCC DED (Monte Carlo)
T §s 7 4X Fit DED

=) i§ H% @ 4X Fit DED (Monte Carlo)

N oop RN X1 4X Fit ARCC DED

5 5.5 6 6.5
Intended Machine Lifespan

7 N 4X Fit ARCC DED (Monte Carlo)

Figure 4. Comparison between the SDC rate of simultaneous double error detection (DED) as pro-
vided by commercial SCCDCD and that of the reduced double error detection (ARCC DED) as pro-

vided by applying ARCC to commercial SCCDCD.

codeword and occurring within the same scrub period of a
few hours is small.

To understand the extent of degradation in detection re-
liability when applying ARCC to commercial chipkill, we
used the chipkill correct reliability models given in [6]. The
fault rates that were used as inputs to the models are taken
from a recent large field study on DRAM errors [12], and
include those of lane, device, bank, column, and row faults.
A memory scrub period of 4 hours was assumed, which
is consistent with the memory scrub period used in [12].
The memory configuration of the baseline commercial chip-
kill correct solution consists of a memory channel with 2
ranks, with 36 devices per rank, and, therefore, a total of 72
DRAM devices. We used the double chipkill correct/detect
model provided in our technical report [6] to calculate the
error detection reliability of the baseline SCCDCD. Since
SCCDCD+ARCC cannot detect a second bad symbol in a
codeword unless it occurs after the first bad symbol in the
codeword has been detected, its error detection reliabililty is
the same as that of the error correction reliability of Double
Chip Sparing. Therefore, we used the Double Chip Spar-
ing reliability model in [6] to calculate the error detection
reliability of SCCDCD+ARCC. To report the SDC rate, we
converted the reliability output to the SDC rate. When cal-
culating the SDC rate, we assume that all DIMMs in a ma-
chine are to be replaced as soon as the first undetectable
error occurs in the machine, so that the same faulty ma-
chine does not contribute multiple silent data corruptions.
To validate the results of the reliability models, we also per-
formed Monte Carlo simulations (detains in [6]). Figure 4
shows the number of SDCs in 1000 machine-years calcu-
lated using the output from the reliability model for both

Table 1. Memory Configurations

Name Tech I/O | Chan | Ranks/Chan | Rank Size
Baseline | DDR2 | X4 2 1 36
ARCC DDR2 | X8 2 2 18

Table 2. Processor Microarchitecture

SS Width 1Q Size Phys Regs LSQ Size
2 16 72FP/72INT 32L.Q/32SQ
L1DS$,1$ | L1 Assoc L1 lat. L2$
32 kB 2 1 cycle 1IMB
L2 Assoc L2 lat. Cacheline Size L2 MSHR
16 10 cycles 64B 240

the SCCDCD baseline and SCCDCD+ARCC for different
intended lifespans of a machine and for different factors of
the failure rate. The figure shows that the increase to SDC
rate of SCCDCD+ARCC over SCCDCD alone is insignifi-
cant.

7 Methodology

Table 1 summarizes the memory configurations for com-
parison against commercial chipkill correct solutions. The
commercial chipkill correct baseline simulated consists of
a single memory channel with 2 ranks per channel and 36
devices per rank. Due to the large number of devices per
rank, both the burst length and the I/O width of each de-
vice must be small to satisfy the chosen cacheline size of
64B. As such, DDR2 X4 devices are chosen for the SC-
CDCD baseline. The corresponding memory configuration
for ARCC consists of 2 memory channels with 2 ranks

Table 3. Workloads simulated
Mix1 mesa;leslie3d;GemsFDTD;fma3d

Mix2 omnetpp;soplex;apsi;mesa
Mix3 sphinx3;calculix;omnetpp;wupwise
Mix4 lucas;gromacs;swim;fma3di
Mix5 mesa;swim;apsi;sphinx3
Mix6 sjeng;swim;facerec;ammp
Mix7 milc;GemsFDTD;leslie3d;omnetpp
Mix8 facerec;leslie3d;ammp;mgrid

Mix9 applu;soplex;mcf2006;GemsFDTD
Mix10 | mcf2006;libquantum;omnetpp;astar
Mixl11 calculix;swim;art1 10;omnetpp
Mix12 Ibm;facerec;h264ref;ammp

Table 4. Fraction of pages upgraded for each
type of device-level fault.

Fault Type Fraction of Pages Upgraded
Lane 100%: It causes both ranks per channel
to be upgraded.
Device 1/2: It causes 1 out the 2 ranks to be upgraded.
Subbank 1/16: It causes 1 out of the 8 banks in a single
rank to be upgraded.
Column 1/32: It causes half of the pages in a single
bank to be upgraded.

per channel and 18 devices per rank. Both configurations
have the same total number of devices. In order to pro-
vide the same output granularity with 18 devices per rank
as that of the baseline with 36 devices per rank, we in-
creased I/O width of each device from X4 to X8 for ARCC.
DRAMsim [14] was used to model memory power and tim-
ing. The DRAM device parameters are taken from Micron
datasheets [7]. We assume that there are 2 4KB pages per
row in memory. For the row buffer and physical address
mapping policies, we used the closed page policy and the
high performance mapping policy, respectively, as provided
by DRAMsim. Meanwhile, we simulated a quad-core pro-
cessor running 12 mixed SPEC workloads for 2 billion cy-
cles using M5 [2], a full system simulator. Table 2 describes
the CPU microarchitecture while Table 3 shows the work-
loads that were used.

We used the following methodology to study the power
and performance degradation due to upgraded pages in
ARCC as faults develop over time:

1. We estimated the power and performance overhead as-
sociated with each type of device-level fault, intro-
duced in Section 6 for the memory configuration sum-
marized in Table 1 by setting the fraction of memory
affected by that type of fault to upgraded mode and re-
peating the experiments. Table 4 lists the fraction of
pages upgraded for each type of fault.

2. Using Monte Carlo simulations, we simulate a 7 year
lifespan for 10000 memory channels to capture when

and what type of device-level faults occur during the 7
simulated years in the 10000 channels. The fault rates
from [12] were used.

3. For each recorded fault type in each simulated mem-
ory channel, we added the overhead associated with
that fault to the performance and power of that chan-
nel, starting from the time that the fault occurs.

4. For each year X in the intended lifetime of a channel,
we averaged the power and performance of the 10000
memory channels from the beginning of the first year
to the end of year X to provide an estimate for the
overall power and performance of ARCC in the pres-
ence of faults.

8 Results

When ARCC is applied to commercial chipkill correct
solutions, which require 36 devices to be accessed per mem-
ory request, significant power reduction can be achieved as
ARCC requires only 18 devices to be accessed for pages
that are fault-free and 36 devices to be accessed for pages
with faults (see Table 1). Figure 5 shows the DRAM
power and performance improvement from applying ARCC
to commercial chipkill correct solutions when there are no
faults in memory. Performance of a mixed workload is re-
ported as the sum of the IPCs of all the benchmarks in the
workload. On average, ARCC reduces power consumption
by 36.7% and improves performance by 5.9%. The power
benefit across the workloads are relatively uniform due to
the fact that ARCC saves the same amount of power ev-
ery memory access regardless of the application character-
istics. The slight performance improvement is due to having
twice the number of ranks under ARCC, which increases
the amount of rank-level parallelism. Different benchmarks
experience different amount of benefits from the increased
rank-level parallelism, which explains the variation in per-
formance.

Figure 6 shows the power consumption of ARCC in the
presence of a single device-level fault in memory normal-

40.0%
30.0%

o
20.0% O Power Reduction

10.0% B |PC Improvement

0.0%

N 2o x5 o A D 90 N O @
FFFFFFE @ @.\4\ @.\4\ @.\4\ @@Q
v

Figure 5. Power and Performance Improve-
ment from applying ARCC.

200.0%
160.0% n

150.0% m

140.0%

LUt 1 Column Fault
. @ 1 Subbank Fault
120.0% 01 Device Fault
1 Lane Fault
Jud d1dd
100.0% ol (W d
DO O X6 oA DO Q0N @ o
ORIy
¥ P
5
&

Figure 6. Power consumption of ARCC when
there are different types of faults in memory,
normalized to when there is no fault.

ized to when the memory is fault free. Results are pre-
sented for different types of device-level faults. For ex-
ample, 1 Device Fault” represents the scenario where half
of the pages have been upgraded due to a device fault (Ta-
ble 4). As expected, the power consumption of ARCC in-
creases in the presence of faults in memory. This is because
2 adjacent 64B lines instead of 1 are required to be accessed
when a 128B line in an upgraded page is accessed. In the
worst case scenario, when there is no spatial locality in the
application, the second 64B line is always not useful to the
workload. In this scenario, the power consumption of ac-
cessing an upgraded page is twice that of accessing a normal
page. As shown in the "Worst Case est.” bar in the figure,
the worst case memory power increases by the fraction of
pages in memory that are upgraded. In reality, the second
64B line is useful for many workloads due to the presence
of spatial locality; as a result, the power overhead due to
device-level faults in memory is much smaller as shown in
the figure.

Figure 7 shows the IPC of ARCC in the presence of
a single device-level fault in memory normalized to when
the memory is free of faults. While some workloads, such
as Mix2 to Mix7, show a clear degradation in performance
when there are faults in memory, some others such as Mix/
and Mix10 show improvement in performance. We attribute
this to the different amount of spatial locality in the different
workloads. Although applications with low spatial locality
suffers when 2 adjacent cachelines have to be accessed for
every memory access after upgrading faulty pages, appli-
cations with high spatial locality on the other hand actu-
ally benefits from having to access 2 adjacent cachelines
because this acts like an useful prefetch. In the worst case
scenario, when there is no spatial locality in the application
and bandwidth is the bottleneck, ARCC can degrade perfor-
mance by as much as 50% in the presence of a lane fault.

120.0%

100.0%

80.0%
B 1 Column Fault

60.0% Il 1 Subbank Fault
O 1 Device Fault
40.0% 11 Lane Fault
NS C SO Sty
v fz?
RS
&
N

Figure 7. Performance of ARCC when there
are different types of faults in memory, nor-
malized to when there is no faulit.

5
4
1 2 3 4 5 6 7

Years of Operation

= 1X Fit Obsenrved
-+ 1XFit Worst Case
¥ 2X Fit Observed
-+ 2X Fit Worst Case
+4X Fit Observed
~+4XFit Worst Case

N

% Increase in Memory Power
- w

Figure 8. Average increase in power con-
sumption as a function of time compared to
fault-free memory.

5
4
3
1 2 4 5 6 7

Years of Operation

& 1XFit Observed
-+ 1XFit Worst Case
- 2X Fit Obsened
-+ 2X Fit Worst Case
+4X Fit Observed
~+4XFit Worst Case

N

% Decrease in Performance

Figure 9. Average decrease in performance
as a function of time compared to fault-free
memory.

However, due to spatial locality in the applications studied,
there was negligible performance degradation on average.

The fraction of pages that are faulty in a memory sys-
tem increases with time. Using the methodology described
in Section 7, we calculated the average power and perfor-
mance degradation during different years in the lifetime of
the memory system in Table 1. The results are shown in
Figures 8 and 9 respectively. The worst case estimate curves
in the figures assume that there is no spatial locality in the
application and therefore a memory access to an upgraded
pages consumes twice as much power and reduces effective
bandwidth by half compared to a memory access to a re-
laxed page. The figures show that the degradation both in
terms of the worse case estimate and measured overheads is
small. This is due to the fact that, on average, only a tiny
fraction of memory are affected by faults (see Figure 2). In
fact, power benefits from ARCC even at the end of 7 years
for 4X the memory fault rate reported in [12] is no less than
30%.

8.1 Applying ARCC to LOT-ECC

As described in Section 5, ARCC can be applied to LOT-
ECC to enable Double Chip Sparing by converting a page
from the 9-device LOT-ECC to 18 device LOT-ECC, again
by requiring two channels, each channel with 9 devices per
rank, to operate in lockstep during memory accesses to the
upgraded pages. Compared to applying ARCC to commer-
cial chipkill correct solutions, applying ARCC to LOT-ECC
not only incurs the power overhead of accessing twice as
many devices per memory request, but also requires an ad-
ditional read access for every regular read access. There-
fore, in the worst case scenario, where an application con-
sists of 100% read accesses and has no spatial locality, a
memory access to an upgraded page is equivalent to 4 mem-
ory accesses to a relaxed page. As a result, the power of
memory accesses to upgraded pages can differ by a factor
of 4 compared to the power of memory accesses to relaxed
pages. Similarly, the effective bandwidth for memory ac-
cesses to the upgraded pages is also reduced by a factor of
4. Figure 10 shows the average power increase and perfor-
mance degradation due to faults during different years in
the lifetime of the memory system of ARCC + LOT-ECC
compared to that of the regular 9-device LOT-ECC for the
worst case application scenario. The figure shows that for
the memory fault rate reported in [12], the average power
increase/performance degradation during the 7 year period
is only 1.6%. This is a small cost for reducing the DUE rate
by 17X by providing Double Chip Sparing [4]. Even for
a fault rate 4X as high as that of the memory fault rate re-
ported in [12], the average power increase and performance
degradation are expected to be no more than 6.3%, on aver-
age.

=
o @ 12
5 :
g g 10
206
gg 8 = 1X Fit
3o g -+2X Fit
E.E - 4XFit
- C
o .2 4
wi—'
©
g 2
©
QL
£ o0
e o 1 2 3 4 5 86 7 8
[-)

Years of Operation

Figure 10. Average increase in power and de-
crease in performance of ARCC+LOT-ECC vs
9-device LOT-ECC for the worst case applica-
tion scenario as a function of time.

9 Conclusions

In this paper, we propose ARCC, a novel optimization
for existing chipkill correct solutions that aims to provide
the reliability of a high strength of chipkill correct solution
at the same memory power overhead of a low strength chip-
kill correct solution without increasing the storage over-
head. Based on the observation that only a small fraction
of memory experiences faults in memory for a typical op-
erational lifespan of a memory system, ARCC begins with
a low chipkill correct strength and adaptively increases the
chipkill correct strength on a page by page basis as they
become affected by faults, in order to take advantage of
the power benefit of weaker chipkill correct solution for all
fault-free pages while providing the reliability of a stronger
chipkill correct solution. We presented an efficient imple-
mentation of the concept, where the number of check sym-
bols per codeword is doubled after faults are detected in a
page by combining two adjacent codewords in two differ-
ent channels into a single large codeword without increas-
ing the overall storage overhead. We performed a compara-
tive evaluation of the power, performance, and reliability of
this implementation relative to commercial chipkill correct
solutions. Our experiments show that this implementation
reduces memory power by 36% when applied to commer-
cial chipkill correct solutions with negligible degradation to
reliability. ARCC not only can be used to reduce the power
consumption of existing commercial chipkill correct mem-
ories with 4 check symbols per codeword, but also provides
an implementation for stronger chipkill correct solutions in
the future, such as those with 8 check symbols per code-
word, with only small increase to memory power consump-
tion.

10

Acknowledgements

This work was supported in part by NSF and Oracle. We
thank Vilas Sridharan, Nathan Debaraladeen, Sean Blan-
chard, and anonymous reviewers for their helpful feedback.

References

(1]
(2]

(3]

(4]
(5]
(6]

(7]

(8]

(9]

(10]

(1]
[12]

[13]

[14]

[15]

AMD. BIOS and Kernel Developer’s Guide for AMD Fam-
ily 15h Models 00h-OFh Processors. 2012.

N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhard. The M5 Simulator: Modeling
Networked Systems. IEEE Micro, 2006.

C. Chen and M. Hsiao. Error-correcting codes for semicon-
ductor memory applications: A state-of-the-art review. IBM
Journal of Research and Development, 1984.

HP. RAS Features of the Mission-Critical Converged Infras-
tructure. 2010.

Intel. RAS Features of the Mission-Critical Converged In-
frastructure. 2010.

X. Jian, S. Blanchard, N. Debardeleben, V. Sridharan,
and R. Kumar. Reliability Models for Double Chipkill
Detect/Correct Memory Systems (UILU-ENG-13-2201).
http://passat.crhc.illinois.edu/rakeshk/chipkillModel.pdf,
2013.

MICRON. 512Mb: x4, x8 x16 DDR2 SDRAM - Mi-
cro. http://download.micron.com/pdf/datasheets/dram/ddr2/
512MbDDR2.pdf.

M. Ohmacht, R. A. Bergamaschi, and S. Bhattacharya. Blue
Gene/L. Compute Chip: Memory and Ethernet subsystem.
2005.

M. K. Qureshi. Pay-As-You-Go: Low-Overhead Hard-Error
Correction for Phase Change Memories. Micro, 2011.

J. B. Rothman and A. J. Smith. Sector Cache Design and
Performance. University of California, Berkeley, Technical
Report, 1999.

B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM Errors
in the Wild: a Large-Scale Field Study. SIGMETRICS, 2009.
V. Sridharan and D. Liberty. Field Study of DRAM Errors.
SELSE, 2012.

A. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis,
and N. Jouppi. LOT-ECC: Localized and Tiered Reliability
Mechanisms for Commodity Memory Systems. ISCA, 2012.
University of Maryland. University of Maryland Memory
System Simulator Manual.

D. H. Yoon and M. Erez. Virtualized ECC: Flexible Relia-
bility in Main Memory. Micro, 2010.

