Parity Helix: Efficient Protection for Single-Dimensional
Faults in Multi-dimensional Memory Systems

Xun Jian
University of lllinois
at Urbana-Champaign
xunjiani@illinois.edu

ABSTRACT

Emerging die-stacked DRAMs provide several factors
higher bandwidth and energy efficiency than 2D DRAMs,
making them excellent candidates for future memory
systems. To be deployed in server and high-performance
computing systems, however, die-stacked DRAMs need
to provide equivalent or better reliability than existing
2D DRAMSs. This includes protecting against channel
and die faults, which have been observed in existing 2D
DRAM production systems.

In this paper, we observe that memory subsystems
can be viewed as a multi-dimensional collection of mem-
ory banks in which faults generally affect memory banks
that lie along a single dimension. For instance, in die-
stacked DRAMs, a die consists of a group of DRAM
banks that lie in a horizontal plane while a channel
consists of a vertical group of banks spanning across
multiple dies. We exploit this fault behavior to pro-
pose Parity Helix to efficiently protect against single-
dimensional faults in multi-dimensional memory sys-
tems. Parity Helix shares the same error correction
resources across all dimensions to minimize error correc-
tion overheads. For die-stacked DRAMs, our evaluation
shows that compared to a straightforward extension of
previous schemes, Parity Helix increases memory ca-
pacity by 16.7%, reduces memory energy per program
access by 21%, on average, and by up to 45%.

1. INTRODUCTION

Memory is fast becoming the power, and therefore,
performance bottleneck of modern and emerging com-
puter systems. For example, memory consumes 30%
of total power in HPC systems, on average, and up
to 40% of total power in data centers [1, [2]. If the
conventional DDR3 memory technology were deployed
in future exascale systems, memory power consumption
will constitute 2.5X the total system’s power budget [1].
Many architecture and technology level solutions have
been proposed to improve the energy efficiency of the
memory system [2 |3} |4]. One promising solution is to
stack multiple DRAM dies on top of one another using
through silicon vias (TSVs) [1]. Die-stacked DRAMs
improve memory bandwidth by 4-20X and energy effi-

978-1-4673-9211-2/16/$31.00 (©)2016 IEEE

Vilas Sridharan

RAS Architecture
Advanced Micro Devices, Inc.
vilas.sridharan@amd.com

Rakesh Kumar
University of lllinois
at Urbana-Champaign
rakeshk@illinois.edu

ciency by 3X compared to latest generation 2D memo-
ries, such as DDR4 and GDDR5 memories [5, [6]. As a
result, die-stacked DRAMs may replace 2D DRAMs as
the main building block of memory systems in the near
future.

Many recent studies show that DRAM faults are a
common occurrence in production systems [7} 89} [10].
An uncorrectable error in memory can lead to a system
crash, which degrades both performance and availabil-
ity. As such, many supercomputers and data centers
deploy memory error resilience techniques to protect
against DRAM faults [7], [8| [0l [10]. A large body of
recent works also explore how to provide efficient er-
ror resilience for 2D DRAMs [11} |12} [13]. Die-stacked
DRAMs will also need error resilience techniques that
provide similar reliability in order to be deployed in
these reliability-critical systems.

A fault mode that is commonly covered by memory
error resilience techniques for data centers and super-
computers, such as the well-known Chipkill Correct |7}
8,19], is the DRAM chip failure. Due to the large num-
ber of DRAM chips in large-scale systems, DRAM chip
failures are common. Chipkill Correct protects against
the complete failure of DRAM chips in conventional
memory systems with 2D DRAMs. Several recent works
have started exploring error resilience for die-stacked
DRAMs |14 (15, 16]. While prior works protect against
up to channel faults, DRAM die faults have not been
addressed.

One challenge with protecting against DRAM die faults
and channel faults in die-stacked DRAMs is that a DRAM
die consists of a group of DRAM banks that lie in a hor-
izontal plane while a channel consists of a vertical group
of DRAM banks that span across multiple DRAM dies;
as such, a die fault affects a horizontal group of banks
while a channel fault affects a vertical group of banks.
A straightforward resilience scheme to protect against
both fault modes is to deploy dedicated error correction
resources to protect against a fault along each physical
dimension. However, maintaining dedicated error cor-
rection resources for each physical dimension can incur
high power and capacity overheads.

In this paper, we propose Parity Helix, a general

memory resilience technique to efficiently protect a multi-
dimensional memory system against single-dimensional
faults. We refer to a multi-dimensional memory system
as a memory system with a multi-dimensional collection
of memory banks; for example, a die-stacked DRAM
can be considered as a three-dimensional collection of
banks. We refer to a single-dimensional fault as a fault
that affects only memory banks located within a subset
of physical dimensions in a multi-dimensional memory
system; we refer to the subset of physical dimensions
that a fault affects collectively as a single logical fault di-
mension. Die faults and channel faults in a die-stacked
DRAM are examples of single dimensional faults. Par-
ity Helix is most effective for multi-dimensional memory
systems where each fault typically affects memory banks
located only within a subset of the physical dimensions
in the memory system. Parity Helix is inspired by the
helix - a properly constructed helix can intersect a hor-
izontal plane and a vertical line segment in at most a
single point in space. Parity Helix constructs every par-
ity group (i.e., a parity line and the data lines it pro-
tects) in a helix-like fashion to ensure that at most a
single line per parity group is affected even in the event
of the complete failure of all the banks within a single
fault dimension.

When applying Parity Helix to die-stacked DRAMSs,
our evaluations show that Parity Helix reduces memory
energy per data access by 21%, on average, and by up
to 45% compared to the baseline scheme of protecting
against both die fault and channel fault by maintain-
ing dedicated error correction resources for each dimen-
sion. In addition, Parity Helix increases available data
capacity per die-stacked DRAM by 16.7% compared to
this baseline with a < 4% increase in uncorrectable er-
ror probability. Further, Parity Helix incurs less than
1% performance overhead compared to prior schemes
that correct channel faults but not die faults. Finally,
while our evaluations focus on die-stacked DRAMs, Par-
ity Helix can be easily applied to other memory tech-
nologies.

We make the following contributions in this paper:

e We propose Parity Helix, a technique to protect
against any single-dimensional fault in a multi-
dimensional memory system.

e We evaluate Parity Helix in the context of die-
stacked DRAMSs; it is the first scheme to protect
against up to a complete DRAM die fault in die-
stacked DRAMs.

2. DIE-STACKED DRAM BACKGROUND

A die-stacked DRAM, or simply a stack, consists of
multiple DRAM dies stacked on top of one another us-
ing TSVs, which provides both structural support and
communication. Since each stack consists of multiple
DRAM dies, a stack contains a large number of DRAM
banks. The large number of DRAM banks in a stack
are grouped into multiple independent channels, as il-
lustrated in Figure[l] Each channel consists of the same

L DRAM
dies

A memory line ==

A channel

base

@ substrate @

Figure 1: Die-stacked DRAM architecture.

DRAM banks in every DRAM die in the stackE|; the
DRAMSs banks within a channel share control and dat-
apath with one another but not with banks in other
channels. Within a bank, DRAM cells are organized in
rows and columns, identically to conventional memory.
Unlike conventional DRAMSs, where each memory line
is sourced in parallel from different DRAM banks in
different DRAM dies, an entire memory line is sourced
from a single bank in a single DRAM die in a stack.
This access behavior resembles that of disks, where an
entire OS page is typically sourced from a single disk.
Because each line is sourced from a single DRAM
bank in a stack, a single fault in a stack can corrupt an
entire memory line. As such, a disk-like resilience ap-
proach, such as RAID, that can protect against entire
line failures is needed [19, |20]. Several recent works on
error resilience for die-stacked DRAMSs have proposed
RAID-like schemes for die-stacked DRAMSs. Citadel
protects up a complete bank fault (i.e., it can protect
against complete failure of every line within a single
bank) in a stack by constructing parity lines from lines
in different banks and then distributing the parity lines
across all the banks in the stack in a manner similar to
RAIDS [15] . Sim et al. protect against up to a complete
channel fault by storing a duplicate of a line of one chan-
nel in another channel, in a manner similar to RAID1
[14]. Jeon et al. protect up to a complete channel fault
[16]; they construct parity lines from lines in different
channels and distribute the parity lines across all the
channels in the stack in a manner similar to RAID5.
In the context of data centers and supercomputers,
large-scale field studies have observed DRAM die fail-
ures in 2D DRAMs (8] /9, [10]. Chipkill-Correct, a mem-
ory error resilience technique commonly deployed in
data centers and supercomputers |7, |89, is used to pro-

IThis organization is supported by all current die-stacked
DRAM standards including HBM [17] and HMC [18]. HBM
also supports a second organization where each channel con-
sists only of DRAM banks within the same DRAM die. Our
work studies the first organization due to its wider support.

Table 1: Fault coverage summary.

Complete | Complete | Complete
Bank Channel Die
[15] v
[14]716] v v
Parity Helix v v v
Diz/‘%/ ol > Chet
v YA AR

1 1

t 1
[T 17

1

I

Figure 2: Left: a channel fault. Right: a DRAM
die fault. Die-stacked DRAMs are vulnerable to
faults along different dimensions.

tect against up to a complete DRAM die fault in conven-
tional memory systems. For die-stacked DRAM mem-
ory systems to achieve similar reliability as conventional
memory systems, die-stacked memory systems also need
to be protected against DRAM die faults. Die-stacked
DRAMs may be even more susceptible to DRAM die
faults than 2D DRAMs. DRAM dies in a stack are much
thinner than 2D DRAM dies to allow the integration
of TSVs [21]. The TSVs are also made from different
materials from the DRAM dies and, therefore, have dif-
ferent thermal expansion coefficients from the DRAM
dies [21]. Both factors make DRAM dies in a stack
more vulnerable to cracking under thermal-mechanical
stress |21} |22} 23]. In this paper, we explore how to ef-
ficiently protect against a DRAM die fault in addition
to protecting against faults covered by prior works. Ta-
ble [I] summarizes the fault coverage of this work with
respect to prior works on error resilience for die-stacked
DRAMSs.

3. MOTIVATION

As shown in Figure I} a DRAM die in a stack con-
tains a horizontal group of DRAM banks while a chan-
nel contains a vertical group of DRAM banks. As such,
a DRAM die fault affects DRAM banks that lie in a
different physical dimension from banks affected by a
channel fault, as illustrated in Figure[2] This makes pro-
tection against a DRAM die fault and against a chan-
nel fault challenging. For example, RAID across all the
channels in a stack (i.e., protecting the channels using
a parity channel) does not protect against a DRAM die
fault because a DRAM die fault affects multiple chan-
nels in the stack. Similarly, RAID across all the DRAM
dies in a stack does not protect against a channel fault
because the fault affects multiple DRAM dies.

One potential solution is to adapt a stronger RAID

Processor

Figure 3: Conventional DRAMSs can also expe-
rience faults along different dimensions.

implementation, such as RAIDG, to die-stacked DRAMs.
RAIDG6 protects against up to two disk failures in a
group of disks [24]. There are numerous implemen-
tations of RAID6, such as EVENODD, Row-Diagonal
Parity, and Horizontal-Diagonal Parity [25] 26 27], but
they all use two parity blocks to protect each data block.
RAIDG can be adapted to die-stacked DRAMSs by pro-
tecting each data line in a stack with two parity lines,
where one parity line is constructed from lines in differ-
ent channels while the other parity line is constructed
from lines in different DRAM dies. In this scheme, the
first parity line helps to protect against a channel fault
while the second parity line helps to protect against a
die fault. However, protecting each data line with two
parity lines can incur high memory power and capacity
overheads (see Section @ Instead, we seek to provide
similar reliability as the RAID6 adaptation while pro-
tecting each data line with a single parity line.

Besides die-stacked DRAMs, other memory technolo-
gies also experience faults along different dimensions.
For example, many conventional memory systems with
2D DRAMSs are also multi-dimensional; a rank of chips
and a lane of chips (i.e., the same chip in different ranks
of DRAM chips that share the same I/O bus bits) in a
conventional memory system occupy different dimen-
sions (see Figure . A lane of 2D DRAM chips in a
conventional memory system can fail together (e.g., due
to a stuck-at-1 or stuck-at-0 I/O pin failure [8]), while
all the chips in the same rank can also fail together (e.g.,
due to a Row-Hammer fault [28]) since these chips are
controlled by the same command signals. Our proposed
solution to protect against any single-dimensional fault
in die-stacked DRAMs is easily generalizable to other
memory contexts, as will be discussed in Section [7}

4. PARITY HELIX

We propose Parity Helix to efficiently protect against
faults that affect a subset of physical dimensions in a
multi-dimensional memory system by sharing the same
error correction resources across all dimensions to min-
imize the overheads of the error correction resources.
Parity Helix is similar to RAID5, which uses ECC bits
dedicated to each line to detect errors and to optionally
correct small errors but uses parity lines to correct large
errors that affect up to an entire line. Parity Helix dif-
fers from RAIDb5 in how the parity lines are constructed.

4.1 Parity Construction

We define a sector as a group of row-wise adjacent
line locations in memory. A data sector contains data
while a parity sector contains the bitwise XOR of the
contents of a set of data sectors. We divide memory
into disjoint and equally-sized groups of sectors called
partitions, such that each partition is uniquely identi-
fiable by N coordinates, each corresponding to one of
the N logical fault dimensions in memory. We call the
union of the same sector in every partition a memory
slice; in other words, each sector within a memory slice
is uniquely identifiable by the N coordinates of the par-
tition that the sector belongs to. Within each memory
slice, we construct stripes of memory, each consisting of
a set of data sectors and a single parity sector.

One key aspect of Parity Helix is the appropriate as-
signment of sectors to stripes within a memory slice.
Parity Helix assigns each sector to the k' stripe in the
sector’s memory slice, where:

k(ci,ca,.oyen) = (c1+co2+...+cn) mod p (1)

In Equation [1} cy,c2,...,cy stand for the coordinates of
the partition that a sector belongs to while p stands for
the protection strength. Specifically, p represents the
number of faulty adjacent partitions that Parity Helix
can correct. Equation [I] ensures that all coordinates
that differ in a single coordinate value by less than p
evaluate to a different value of k. Note that any group of
p adjacent partitions along the same dimension always
differ by less than p in exactly one coordinate value
among the N coordinate values; as such, Equation
assigns all adjacent p sectors along the same dimension
into different stripes. This ensures that a fault that
affects up to p partitions in the same dimension will
affect at most a single sector per stripe; such a fault is,
therefore, correctable by the parity in the single parity
sector of each stripe.

Because k in Equation [[|ranges from 0 to p—1, there
are p stripes per memory slice. Therefore, the total
number of sectors in a stripe is:

Sstripe = memory slice size/p =si-82...-Sn/p- (2)

In Equation [2| s; is the range of the coordinate values
for the i* dimension. Since there are p stripes per mem-
ory slice and Syipe — 1 data sectors per stripe, the total
number of data stripes per memory slice is:

Sas=p- (Sstripe - 1) (3)

There is a parity sector in each stripe; so the capacity
overhead of the parity sectors in a memory slice is:

parity sectors per memory slice/Sg; =
p/SdX = 1/(Sstripe -]) (4>

Since p, the protection strength, should be no more
than the size of the largest dimension in the memory
system, Equation [2| implies that Sg,ipe scales approxi-
mately with the average size of the dimensions raised to
the power of the total number of dimensions minus one;
as such, the capacity overhead of Parity Helix (given

Stripe _ _ - -
[298
\\\ ~ -
A} \\
\ \\
Channel \\
€ \

Sector ~~

Figure 4: We divide memory into partitions,
and partitions into sectors. The same sector in
all partitions together form a memory slice. A
helix-like collection of sectors in a memory slice
form a stripe. Each color represents a different
stripe in the figure.

in Equation [4)) scales inversely proportionally with the
average dimension size raised to the power of the total
number of dimensions minus one. This is significantly
lower than the capacity overhead of protecting each di-
mension with dedicated parities, which scales approxi-
mately proportionally with the total number of dimen-
sions. Moreover, Parity Helix requires updating a single
parity when modifying a unit of data. In comparison,
protecting each dimension with a dedicated parity re-
quires updating N parities when modifying a unit of
data, resulting in higher power and performance over-
heads.

We illustrate Parity Helix using an example mem-
ory system with a single stack with four DRAM dies
and four channels. Since our goal is to protect against
DRAM die faults and channel faults, which affect two
different fault dimensions, we also partition the sectors
in a stack along two dimensions. Since there are four
DRAM dies and four channels in the example stack, the
coordinate values of each dimension ranges from zero to
three. Since a fault (e.g., a DRAM die fault or channel
fault) in the example affects at most four partitions in
a stack, p should be set to four to protect against up to
a complete DRAM die or channel fault. The left half
of Figure [illustrates a memory slice in the example
stack. The right half of Figure [illustrates the stripes
within a memory slice; it shows that each stripe rises
up like a helix, the inspiration of our work. Equation
maps all sectors that belong to the same die (e.g.,
die ¢1) in a memory slice to a different stripe and also
maps all sectors that belong to the same channel (e.g.,
channel ¢;) to a different stripe. As such, a single die
fault or a single channel fault affects at most one sector
per stripe, as illustrated in Figure 5] and is, therefore,
correctable by the parity stored in the parity sector in
each stripe.

In a memory system with multiple stacks, each stack
can either be protected independently or all the stacks
can be protected as a single logical stack. To illustrate

Memory
Slice

a4
=1

&

Figure 5: Left: a channel fault affects at most
a single sector per stripe. Right: a DRAM die
fault affects at most a single sector per stripe.
Thus, the single parity sector per stripe protects
against up to a complete channel or die fault.

the latter case, consider a memory system with n stacks,
ecach with ¢; channels and ¢; dies. All n stacks can be
managed as a single logical stack with n-c¢; channels
and c¢; dies. By configuring protection strength to be
p=max(cy,cy), Parity Helix can protect up to any single
complete channel or die fault among the n stacks.

4.2 Data Layout

Since any single DRAM fault (up to a complete DRAM
die fault or a complete channel fault) affects at most a
single sector per stripe, selecting which sector in a stripe
to be the parity sector has no effect on the error cor-
rection coverage. As such, any one of the sectors in a
stripe can be selected as the parity sector of the stripe
for correctness. However, the selection of which sector
in a stripe to be the parity sector can have significant
impact on performance. A parity sector needs to be up-
dated whenever a data line (i.e., a line location in a data
sector) is written. Updating the parity sector requires
a read-modify-write operation to the parity line (i.e., a
line location within the parity sector) that corresponds
to the line being written; the read-modify-write oper-
ation requires two line accesses. Therefore, updating
the parity sectors can potentially become a bandwidth
bottleneck if they are concentrated in a subset of the
partitions in a stack.

To avoid bandwidth bottlenecks due to updating the
parity sectors, we evenly distribute the parity sectors
across all partitions in a stack similar to how RAID5
evenly distributes the parity blocks across all disks in
a disk array [19]. This can be achieved by rotating the
parity sector over all possible positions in a stripe. Since
each sector in a stripe belongs to a different partition,
alternating which sector in each stripe should be the
parity sector evenly distributes the parity sectors across
all partitions. This can be implemented by letting the
same stripes within each group of Sy, memory slices
all have a different sector as the parity sector, as illus-
trated in Figure [6}

Distributing the parity sectors evenly across all parti-
tions can complicate the mapping of physical lines (i.e.,

& &S & 5

stripe Sgyipe1

stripe 0 stripe 1

Figure 6: Parity layout. The parity sectors ro-
tate over Sy, memory slices. This distributes
the parity sectors evenly across all partitions to
eliminate bandwidth bottlenecks due to updat-
ing the parity sectors.

physical line address A

L]
J

l
|

‘ sector address S ‘

sector offset

SIS

| S%(SuripeSes) |

> look up DMT

‘ die# H channel# ‘ ‘ sector offset ‘ stack location of A

> look up PMT

stack location of
sector offset | the parity line of A

[slice# | | die# || channel# |

Figure 7: Steps for calculating the location of a
physical line in a stack and the location of the
parity line that protects the physical line.

lines in the OS physical address space) to line locations
within the stack. Since each partition now stores a mix-
ture of both data and parities, one must avoid storing a
physical line to a parity sector. We describe a physical
line to stack location mapping that distributes the par-
ity sectors evenly across all partitions. When designing
such a mapping, we note that adjacent physical lines of-
ten exhibit spatial locality; therefore, mapping adjacent
physical lines to the same stripe improves the locality of
the parity lines in the memory buffer, and for resilience
designs that cache ECC bits in the processor, improves
the locality of the parity lines in the last-level cache as
well. However, mapping adjacent physical lines to dif-
ferent sectors in the same stripe can reduce row buffer
hit rate since different sectors in the same stripe belong
to different channels and dies and, thus, different rows
in memory. As such, we propose first filling up a sin-
gle sector with the most adjacent physical lines before
filling up the stripe with less adjacent lines to achieve
both high row buffer hit rate and high spatial locality
for the parity sectors.

Figure[7]summarizes the steps needed to locate a data
line and its parity line in a stack given a physical line
address A. To locate a data line given a physical line
address A, we first compute S, the sector address for the
line by taking the first n — sector_width bits in address
A, where n is the total number of bits in address A and
sector_width is the number of bits needed to represent
the sector size, which is the number of lines per sector;
the last sector_width bits in the line address, therefore,
indicates which one of the sector size number of lines
within the sector stores the physical line. Next, the
memory slice that contains S is found through S/Sg;.
Recall that a memory slice is the union of the same
line locations in all the partitions in a stack; as such,
A is mapped to the (S/S;)" sector in the appropriate
partition.

Finally, to determine the appropriate partition, which
is uniquely identifiable by the die ID and channel 1D
of the partition, recall that the locations of the par-
ity stripes rotate within groups of Sy,ipe memory slices
(see Figure @; therefore, the locations of the parity sec-
tors start repeating after every S ipe memory slices.
As such, we record the channel ID and die ID for §
in a data mapping table (DMT) that is indexed by
S mod (Ssripe - Sas). The (S mod (SS,,,-pe~SdS))th entry
in the DMT stores the die ID and the channel ID of
S. To maximize the spatial locality of the parity sec-
tors, the DMT maps adjacent physical addresses into
the same stripe by storing in adjacent DMT entries
die IDs and channel IDs that point to the same stripe
(see the paragraph below for details). Similarly, we use
S mod (Sgripe - Sas) as an index into a parity mapping
table (PMT) to identify the die ID and channel ID of
the parity sector of the stripe to which A belongs. The
DMT and PMT are implemented in hardware in the
memory controller for fast lookup.

Populating the DMT takes the following steps. First,
compute the stripe number k for all pairs of die ID and
channel ID in a stack using Equation [I] and then sort
the ID pairs by their respective k values from the least
to the greatest. Next, replicate the sorted list of ID
pairs Sgripe — 1 times and concatenate all Sgipe lists
into a single list. Then, for each m™ group of Sstripe " P
adjacent ID pairs within the single large list (where
m € [0,Ssripe — 1]), remove the m'™™ ID pair in each group
of Ssripe adjacent ID pairs; these removed ID pairs point
to parity sectors. Finally, insert the remaining ID pairs
in the single list into the DMT in order, one ID pair per
DMT entry.

4.3 Error Correction

Similar to RAID, when a line encounters an error that
is uncorrectable by the line’s dedicated ECC, Parity He-
lix uses the parity line and other data lines in the same
stripe to reconstruct the erroneous line. While the par-
ity line of the erroneous data line can be found through
the PMT, the other data lines in the same stripe need
to be identified using a separate table, which we call
the correction table or C'T. The CT contains a total of
P - Saripe entries, one for each of the p stripes in Sy yipe

memory slices. The i* entry in the CT contains the
partition coordinates of all the data stripes in a mem-
ory slice that belongs to the i’ stripe in the memory
slice.

Reading out all lines in the stripe to correct an erro-
neous line can incur significant performance and energy
overheads. The problem of having to read out multi-
ple lines to perform error correction using a parity line
is common across all RAID-based error resilience solu-
tions, which include prior works such as [15] and [16].
This problem is especially of concern for permanent
DRAM faults, which requires repeated error correction.
Unfortunately, field studies show that the permanent
fault mode is also the most common fault in DRAMs
[8L[9]. Since error correction via the parity lines is used
only when a data line encounters an error that is uncor-
rectable by its dedicated ECCs, error correction via the
parity lines is only needed for large granularity faults
such as the DRAM die fault or channel fault that can
cause complete line failures. To reduce the overheads
of Parity Helix for error correction via the parity lines,
we propose gracefully degrading the available capacity
of a faulty stack by retiring (or disabling) faulty chan-
nels and dies. This prevents future accesses to faulty
channels and dies to prevent frequent error correction
via parity lines; in addition, avoiding repeated accesses
to faulty channels and dies also alleviates the burden
on error detection since repeatedly accessing erroneous
lines increases the chance of errors going undetected.

Retiring a DRAM die or channel reduces the size
of the corresponding partition dimension size by one.
Since the number of dies or channels in a stack is re-
duced, the data previously stored in the stack can no
longer completely fit in the stack and thus some of the
data must be migrated outside of the stack. This re-
quires alerting the OS to migrate the content of the top
1/M OS pages, where M is the total number of dies or
channel per stack, currently mapped to the faulty stack
to other stacks or to disk and then permanently retire
the corresponding OS pages. This frees up a channel
or die worth of free space within the stack such that
the memory controller of the faulty stack can reorder in
hardware the remaining data in the stack to completely
avoid using the disabled die or channel. This requires
recalculating the contents of the DMT, PMT, and CT
using the new dimensions via the procedures described
in Section [£:2] and then making minor adjustments to
the tables to completely avoid any access to the disabled
DRAM die or channel; the latter can be accomplished
by simply increasing all coordinate values in the table
by one for all DRAM die IDs or channel IDs greater
than or equal to the disabled DRAM die or channel.

4.4 Hardware Overheads

Parity Helix requires adding new hardware structures
to the processor to implement the division and modulo
operations in Figure These are divide-by-constant
and modulo-by-constant operations, with the constants
being Sy and Syiripe - Sus, respectively. The area over-
head of a modulo-by-constant circuit is low |29} |14];

Qureshi et al. report that it requires only a few hun-
dred logic gates and incurs a two-cycle latency [29]. For
the divide-by-constant operation, Drane et al. report
a 0.001mm? area overhead and Ins delay for a non-
approximate always-round-to-zero constant divider syn-
thesized using the 65nm processing technology [30].

In addition to adding the divide-by-constant and modulo-
by-constant circuits to the processor, Parity Helix also
requires adding the DMT, PMT, and the CT to the pro-
cessor. Both the DMT and PMT require S ipe - Sqs €n-
tries with ceil (loga(s1)) +ceil(loga(s2)) + ...+ ceil (loga (sn))
bits per entry. The CT requires p entries with (S ipe —
1)-(ceil(loga(s1))+ceil(loga(s2))+ ... +ceil(loga(sn))) bits
per entry. Finally, two sets of DMT, PMT, CT are
needed during the retirement process because both the
mappings before and after the retirement are needed
during the retirement process. For our evaluation in
Section [with 8GB stacks, the total size of the two sets
of all three tables is 2016 bytes per stack. Due to the
small sizes of each individual tables, the latency over-
head of accessing each table is only one cycle.

Finally, to identify faulty die or faulty channel for
graceful capacity degradation in a faulty stack (see Sec-
tion, we require a counter for each channel and each
die in the stack to count the number of errors encoun-
tered in the channel or die. If the number of errors for
a channel or die exceeds a threshold, we perform read-
write-read on all the lines in the channel or die to detect
whether errors exist in multipleﬂ banks in the channel
or die; if so, the channel or die is marked as faulty. As-
suming an 8-bit threshold counter for each channel or
die, and one bit per bank for each channel or die to
indicate whether the bank contains error(s), a total of
64B is required for the evaluated system in Section [0}

S. METHODOLOGY

5.1 Baselines

We compare against three error resilience baselines.
The first baseline is similar to [1]; it protects each line
with only dedicated ECC bits but not with any par-
ity line. We refer to this baseline as Non-RAID ECC.
The second baseline is similar to [16]; it protects up to
a complete channel in a stack by using RAID5 across
channels. We refer to this baseline as Channel Correct.
We evaluate these two baselines because the former min-
imizes capacity and power overheads while the latter
maximizes protection strength among all prior works
on error resilience for die-stacked DRAMs. The third
baseline is the simple RAID adaptation to die-stacked
DRAMs that we described in Section [3} it corrects up
to a complete channel and a complete DRAM die fault
in a stack by protecting each data line with two parity
lines. We refer to this as Two-Parity RAID (TPR).

5.2 Microarchitecture and Workloads

We use GEM5 [31], a cycle-accurate simulator, to
simulate a 16-core x86 processor. Table [2[lists the pro-

2If errors exist in a single bank, we disable the whole die
(instead of a single bank) for simplicity.

Table 2: Processor Microarchitecture

Core 16 cores, 3GHz, 2-issue OOO
L1 d-cache, i-cache 2-way, 64kB, 1 cycle
Private L2 cache 8-way, 512kB, 3 cycles
Shared L3 cache 32-way, 32MB, 20 cycles

Table 3: Workloads
Composition| | Read BW(GB/s)]
Write BW(GB/s)|
Workload F.F. Distance RSS(GB)
NAS:Ht.D 16T | 64.1s 34[1.2]10
NAS:lu.D 16T | 58.1s 24112189
NAS:sp.D 16T | 40.8s 36 | 6.0 |11
NAS:ua.D 16T | 19.0s 54114173
NAS:ft.C 16T | 11.8s 7.0]6.0]54
NAS:mg.C 16T | 7.7s 1311133
Splash2xX:HTt | 16T] 75.05 763312
Splach2X:
ocean_cp 16T | 5.2 11]8.9]3.5
4T radix, 4 mcf
4 omnetpp,
mix_INT 4 astar | 8.0s 7212112
4T ocean_cp,
4 bwaves,
mix_FP 4 cactusADM, 21 8.5 12
4 wrf | 43.7s

cessor parameters; they are based on Intel Xeon E7
processors. The cache access latencies in Table |2 are
obtained using CACTI [32] assuming the 32nm process
technology. For generality, our evaluation assumes that
the processor implements memory error resilience; our
techniques and analysis apply directly when a logic die
on a die-stacked DRAM is used to implement error re-
silience [18]. For the RAID-based resilience schemes,
the processor caches the parity lines in the last-level
cache of the processor, similar to many prior works in
memory error resilience (11} 33} [15]. We use the caching
scheme in [33], which not only reduces the number of up-
dates to the parity lines in memory, but also reduces the
number of reads to the stale values of data lines needed
to calculate the update to the shared parity lines.

We simulate 10 workloads in full system mode; the
simulated OS is the Linux 2.6.28.4 OS provided with
GEMS5. The workloads consist of six NAS Parallel bench-
marks [34], two SPLASH2X multi-threaded benchmarks
[35], a floating-point mixed workload and an integer
mixed workload. Each mixed workload consists of SPEC
benchmarks and multi-threaded SPLASH2x benchmarks.
We fast-forward each workload in GEMS5 functional sim-
ulation mode until after the OS has started up and the
parallel benchmarks have completed their initialization;
we rely on the terminal output in the simulated Linux
OS to determine when the OS startup and workload ini-
tialization have completed. After the fast-forwarding,
we warm up the processor cache in functional mode
for 200ms of simulated time; the 200ms cache warmup
period is selected to fill up the 32MB last level cache

Table 4: Stack Configuration
Capacity /Dies/Channels 8GB/8/8
Channel Bandwidth 0.5GHz, 144-bit wide
data line size 64B
Banks/Row size 16 per channel/2KB
MSHR /refresh (ms) 32 per channel /64

Activate/Precharge (nj) 1.48/1.43
DRAM Read/Write (nj) 6.87/6.87

TSV/IO transfer (nj) 1.13/5.5
tCAS-tRCD-tRP-tRAS (1s) 18-18-18-26

and turn over the cache content many times. Finally,
we simulate each workload in cycle-accurate simula-
tion mode for 15ms of simulated time and report the
measurements taken during this period. Table |3| lists
the composition and fast-forward distance of the cho-
sen workloads, as well as the corresponding memory
characteristics such as memory read bandwidth, write
bandwidth, and resident set size.

5.3 Memory Modeling

We evaluate memory systems with two 8GB HBM
stacks to accommodate the memory footprint of all of
our workloads. We evaluate ECC stacks, which con-
tains 12.5% more bits per line than a non-ECC stack
for storing dedicated per line ECC bits [17]. We select
the die, channel, and bank count of each stack according
to the top configuration available in the HBM specifi-
cation [17]. For the memory I/O frequency, however,
we evaluate a low 500Mhz frequency; since Parity Helix
incurs a bandwidth overhead for updating the parity
lines, evaluating a lower I/O frequency enables us to
stress the stack bandwidth utilization and, therefore,
stress the performance overhead due to the bandwidth
overhead. To further stress the stack bandwidth uti-
lization, we assign the first contiguous half of the phys-
ical address space to the first stack and the second half
to the second stack instead of interleaving the physi-
cal address space evenly across the two stacks. Our
evaluation shows that our workloads utilize up to 48%
of the available bandwidth in the more frequently ac-
cessed stack out of the two, and 27% on average, under
the Non-RAID ECC baseline; we also observed bursty
periods within the evaluation interval that utilize nearly
100% of the memory bandwidth. As such, we believe
our workloads sufficiently stress the memory bandwidth
utilization. We use CACTI-3DD |[36] to model the stack
power and timing similar to [16]. We use the numbers
reported in [37] to calculate the IO energy of a stack.
We use DRAMsim?2 [38], a cycle-accurate DRAM sim-
ulator, to model the timing of the stack. Table [d] sum-
marizes the evaluated stack parameters.

We model memory controllers that prioritize reads
over writes and use the first-come-first serve policy and
bank-round-robin policy as the intra-bank and inter-
bank memory scheduling policies, respectively. We eval-
uate the open-page row-buffer policy. For the RAID-
based resilience schemes, we colocate eight adjacent phys-

Table 5: Evaluated stack fault rates [9, 16].

Fault Type Affects up to Fault rate

Single-bit one bit per line | 0.030 FIT/Mb
Single-column | four bits per line | 3.8E-3 FIT/Mb

Single-TSV | four bits per line | 41 FIT/TSV

Single-bank the whole line | 9.4E-3 FIT/Mb

Single-channel | the whole line | 4.8E-4 FIT/Mb

the whole line

Single-die 44E-4 FIT/Mb

ical lines in the same DRAM row (i.e., we set the sec-
tor size, described in Section to eight) to strike a
good balance between row buffer hit rates and good
parity line hit rates for these resilience schemes. For
Non-RAID ECC, which does not require updating the
parity lines, we co-locate 32 adjacent lines in the same
row since each 2KB row in the evaluated stacks can hold
up to 32 64B lines; we interleave adjacent groups of 32
lines across different banks and channels to maximize
bank-level parallelism for Non-RAID ECC.

When modeling Parity Helix, we apply Parity Helix
to each stack individually. For each stack, both the
channel and die coordinate values range from zero to
seven (since there are eight channels and eight dies per
stack in Table ; since a channel fault or a die fault
can affect up to eight partitions, we set p to eight. As
such, the capacity overhead is 1/7 (see Equation [4).

5.4 Reliability Modeling

We use combinatorial analysis to calculate reliabil-
ity. Similar to prior works [14] [15, [16], we assume
the fault rates remain constant over time and use 2D
DRAM fault rates to approximate fault rates in die-
stacked DRAMSs since no reliability data is currently
publically available for die-stacked DRAMs. We use
the DDR3 DRAM fault rates reported in [9]. We pes-
simistically categorize all faults within a bank that can
affect up to an entire line in a bank (e.g., the single-row
fault or single-line fault) as the single-bank fault for
simplicity. For Parity Helix, we directly map the 2D-
DRAM multi-bank fault rate in [9] to our 3D-DRAM die
fault rate because both affect multiple banks in a single
DRAM die. Similarly, when modelling the channel fault
rate, we directly map the 2D-DRAM multi-rank fault
rate in [9] to our 3D-DRAM channel fault rate because
both affect multiple banks in different DRAM dies with
common I/O connection. We use the average fraction
of lines affected by a bank, multi-bank, and lane fault
reported in [8] to model the fractions of lines affected by
a bank, die, and channel fault, respectively, in a stack.
For the bank, channel, and die faults, which can affect
up to an entire line, we assume that half of the bits in
each affected line are erroneous, similar to [14]. Since
[9] does not report any TSV fault rates, we use the TSV
fault rate used in [16]. Table [5|lists the fault rates used
in our evaluation.

Recall from Section [4.3] that Parity Helix can protect
against the accumulation of faults by retiring faulty dies
or channels at the cost of reduced available memory
capacity. When modeling the reliability of Parity He-

lix, our reliability calculation assumes that Parity He-
lix is allowed to retire up to two channels or two dies
or one of each since retiring more memory in a stack
may render the stack unusable for the intended appli-
cations. We make the same assumption for TPR; simi-
larly, we assume that Channel Correct can retire up to
two faulty channels (but not any dies since it cannot
correct against die faults). Our reliability calculation
assumes that a patrol scrub is performed once every 24
hours to ensure that faulty channels or dies are detected
and, therefore, retired in a timely manner; if multiple
faults accumulates during the same scrub period - more
than the particular resilience scheme can correct with-
out performing retirement -, our calculation assumes
that the faults cause an uncorrectable error.

Recall from Section[d] RAID uses ECC bits dedicated
to each line to detect errors and/or correct errors and
use parity lines to correct large errors that affect up to
an entire line. We use the dedicated per line ECC pro-
posed by prior works to evaluate all resilience schemes.
The evaluated dedicated per line ECC uses 8B of re-
dundancy for every 64B data line; this matches the
1/8 =12.5% ECC area overhead provisioned in an ECC
stack in the HBM specification [17]. The 8B of dedi-
cated ECC bits is a synthesis of different ECCs used
in prior works [14] [15]. The 8B consists of a 32-bit
CRC computed over the 64B data line, a 16-bit SS-
CDSD ECC computed over the 64B data line using
4-bit symbols, and 16 spare bits. The purpose of the
32-bit CRC is to reliably detect errors that cannot be
corrected by the dedicated ECC, as proposed in [14];
also as proposed in [14], the address of the line is folded
into the CRC to detect address decoder errors. The 16-
bit SSCDSD ECC [16] (which is called the SBCDBD
ECC in [1]) guarantees correction of errors due to the
single-cell fault and single-TSV fault in a stack [16] |1].
The remaining 16 spare bits per line are used to pro-
tect against the accumulation of data TSV faults in a
stack over time, similar to [15]. Since each data TSV
supplies 4 bits per 64B line due to the 128-bit chan-
nel data width (see Table , the 16 spare bits per line
can replace up to 16/4 =4 bad data TSVs per channel.
Similarly, we also use the spare bits to protect against
the accumulation of single bit and column faults. Since
all resilience schemes we evaluate use the same codes
for error detection, Parity Helix differs only in terms of
error correction coverage, not error detection coverage;
therefore, we evaluate the uncorrectable error probabil-
ities, but not the undetectable error probabilities.

6. RESULTS

6.1 Reliability

Figure [8] presents the probability of experiencing un-
correctable error(s) in systems with different aggregate
physical sizes of die-stacked DRAMs. Parity Helix re-
duces the probability of having uncorrectable error(s)
by over 120X and 100X compared to Non-RAID ECC
and Channel Correct, respectively, for all design points
shown in Figure This is comparable in magnitude

Non-RAID ECC @ ® ® ® Channel Correct —esmTpR < Parity Helix

100.000%

10.000%

1.000%

0.100%

0.010%

0.001%

Probability of experiencing uncorrectable
error(s) during 7 years of operation

8GB 80GB 800GB 8TB
Aggregate physical size of all the stacks

Figure 8: Probability of encountering uncor-
rectable memory error(s) in systems with dif-
ferent aggregate stack sizes during seven years
of operation. Parity Helix reduces the probabil-
ity of uncorrectable error(s) by over 120X and
100X compared to Non-RAID ECC and Chan-
nel Correct, respectively.

to the improvement achieved by Chipkill Correct over
SECDED in conventional memory systems (40x [8]).
Parity Helix offers remarkable reduction in uncorrectable
error probability because it can correct all individual
faults in a stack and only fail due to the accumula-
tion of multiple faults; Non-RAID ECC and Channel
Correct, on the other hand, can fail in the presence
of a single fault in a stack (e.g., the DRAM die fault).
Compared to TPR, Parity Helix incurs only 3.6% higher
uncorrectable error probability than TPR, even though
Parity Helix requires only half as much capacity over-
head as TPR for sharing the same set of error correction
resources across both dimensions. TPR incurs slightly
lower probability of uncorrectable error because it can
protect against the accumulation of more faults (e.g.,
both a die and a channel fault) occurring within each
24-hour scrub period due to its higher redundancy than
Parity Helix. However, since the probability of multiple
faults occurring within the same 24-hour scrub period
within the same stack is small, the difference between
the uncorrectable error probability of Parity Helix and
TPR is also small (i.e., 3.6%). This small difference can
be further narrowed by scrubbing more frequently than
once per 24 hours.

Lower uncorrectable error probability reduces perfor-
mance overhead from checkpoint-restart and improves
availability. Consider an HPC system with 64PB of
memory [39], and assume a checkpoint interval of 4
hours and a 2 hour checkpoint-restart performance over-
head for each uncorrectable error. Also assume that the
memory system consists entirely of die-stacked DRAMs.
Using the single stack uncorrectable error probabilities
(i.e., the 8GB data points in Figure, we calculate that
Channel Correct incurs 11.6 hours of performance over-
head per day, while Parity Helix and TPR incur only
0.053 and 0.051 hours per day, respectively.

6.2 Capacity Overhead

BBeginning of life OEnd of life average
100.0% 100.0%

100%

87.5% 87.0% 87.5% 87.0%

80% - 75.0% 74.5%
60% |
40% -

20% |

Normalized data capacity Per stack

0% T T

Non-RAID ECC Channel Correct Parity Helix TPR

Figure 9: Available data capacity per stack.
Parity Helix increases data capacity per stack
by 16.7% compared to TPR and provides the
same data capacity as Channel Correct.

Figure [9]shows the amount of data capacity per stack
(i.e., the number of lines used for storing data lines in-
stead of parity lines in a stack) of different resilience
schemes normalized to that of Non-RAID ECC for the
evaluated stacks. Figure [J] shows both the available
memory capacity at the beginning of a stack’s opera-
tion, when the stack is fault-free, and the average avail-
able memory capacity at the end of the seven years of
operation, when some channel/dies have been retired
due to developing faults. Parity Helix increases the
amount of available data capacity per stack by 16.7%
compared to TPR. Parity Helix incurs the same capac-
ity overhead as Channel Correct, which only protects
up to a complete channel fault in a stack.

Figure [0] shows, however, that Parity Helix provides
12.5% lower available data capacity than Non-RAID
ECC. As will be shown in Sections [6.3] and Parity
Helix also consumes higher power and performs lower
than Non-RAID ECC. On the other hand, Parity Helix
protects against complete DRAM die fault - a fault com-
monly covered in memory systems of datacenters and
supercomputers - while the Non-RAID ECC does not;
Figure |8 shows that Parity Helix provides over 120X
lower probability of experiencing uncorrectable errors
than Non-RAID ECC due to the former’s higher fault
coverage. As such, we believe Parity Helix is a useful
and distinctive design point from Non-RAID ECC.

6.3 Memory Energy

Figure shows the memory energy per program
read /write access for the different schemes. Parity He-
lix consumes 21% lower memory energy per program
access, on average, and up to 45% lower memory energy
per program access (for ft.C). This large difference in
memory energy per program access is due to the larger
number of memory accesses needed to update the parity
lines for TPR. Figure [L1] shows that compared to TPR,
Parity Helix incurs 24% fewer stack access per program
access, on average, and incurs up to 48% fewer stack ac-
cesses per program access for ft.C. TPR requires more
stack accesses per program access than Parity Helix for
three reasons.

250% 1 B Non-RAID ECC OcChannel Correct OTPR B Parity Helix

170% -
150% |

130%

110%

90%
Q

Figure 10: Stack energy per program access.
Parity Helix reduces memory energy per pro-
gram access by 21% compared to TPR.

Normalized memory energy per
stack access by the application

2.70 B Non-RAID ECC OChannel Correct OTPR B Parity Helix

2NN N
W e W U
S o © o

|l
o
o

o
L = W
S o ©

(RO

Total number of stack accesses per
stackk access by the application
5
3

Q Q Q Q < OO R R
S < < < C C X
3 S MR & & & & 2

Figure 11: Number of stack accesses per pro-
gram access. Parity Helix incurs 18.4% fewer
access per program access than TPR and incurs
the same number of accesses as Channel Correct.

First, TPR protects each line of data with two lines
of parity, which effectively doubles the number of addi-
tional stack accesses for updating parity lines. Second,
TPR incurs higher capacity overhead than Parity Helix
(see Section ; this reduces the amount of locality
of the parity lines of TPR in the last-level cache since
each parity line covers (one) fewer data line than Par-
ity Helix. Third, the two parity lines are constructed
from two orthogonal groups of data where one group
consists of data lines from different channels and the
other group consists of data lines from different DRAM
dies; as such, the two parity lines have at most one
data line in common. Therefore, while one parity line
can protect adjacent physically lines (e.g., with physical
addresses A, A+1,A+2,..., A+6), the other parity line
can only protect more distant physical lines (e.g., with
physical addresses A, A+6,..., A+30 etc.). This results
in poorer cache locality of the latter parity line. Parity
Helix, however, only protects each line of data with a
single parity line and, therefore, enjoy high cache local-
ity for the parity lines.

Figure [I0] shows that Parity Helix consumes roughly
the same memory energy per program read/write as
Channel Correct. This is because Parity Helix requires
roughly the same number of stack accesses per appli-
cation access as Channel Correct, as shown in Figure
[[I This is due to the fact that both of these resilience
schemes protect each data line with one parity line and
protect the same number of data lines per parity line.

HNon-RAID ECC OChannel Correct OTPR B Parity Helix
100%

95%
9

S
X

85%

80%

7!

@
x

70%

Normalized system throughput

4
%
%
%
%
o’é’

R é-\\-\-/

Figure 12: System throughput. The throughput
of Parity Helix is 103% and 99% that of TPR
and Channel Correct, respectively.

6.4 Performance

Figure [12| presents the system throughput for the dif-
ferent resilience schemes. For all except for mixed_int,
we use FLOPS (floating point operations per second)
as the metric of measurement. For mixed_int, we mea-
sure throughput using the number of committed store
instructions per secon Figure |12 shows that the av-
erage performance degradations of the RAID-based re-
silience schemes, TPR, Parity Helix, and Channel Cor-
rect, are 4.5%, 7.3%, and 3.3%, respectively, compared
to the Non-RAID ECC. TPR incurs the highest perfor-
mance degradation (62% higher degradation than Par-
ity Helix) due to requiring a large number of overhead
accesses to update the two parity lines protecting each
data line. Parity Helix incurs 1.0% performance degra-
dation compared to Channel Correct due to the added
address decoding latency (see Section .

The above results assume a fault-free memory sys-
tem. Recall from Section that when a partition en-
counters an error that the dedicated per line ECC can-
not correct, Parity Helix retires the channel or die that
contains the partition. On average, the total amount of
time per 8GB stack spent on reconstructing and copy-
ing data for retirement is only 7.4 milliseconds over the
seven-year lifetime of the stack. This low overhead is
due to the high bandwidth die-stacked DRAMs; all 8GB
of data in the evaluated 64GB/s stack can be accessed
in just 8/64 = 125 milliseconds.

7. DISCUSSIONS
7.1 Applicability to Other Contexts

Parity Helix is applicable to other contexts where a

multi-dimensional memory encounters single-dimensional

faults. For example, applying Parity Helix to sub-ranked
2D DRAM memory system is straightforward. Recall
from Section [3] 2D memory systems are vulnerable to

multi-chip failures along different dimensions - both multi-

chip failures among the same chip in different ranks and
multi-chip failures within a single rank. A sub-ranked
2D DRAM memory system allows the option of access-
ing individual DRAM chips in a rank [40} |4} 2]; as such,

3We did not use the total number of instructions (including
integer instructions) as the measurement metric to avoid
falsely measuring program progress when threads spin on
synchronization variables/barriers.

Figure 13: Parity Helix example when single-
dimensional faults exist along three dimensions.

a DRAM chip in a sub-ranked memory system is logi-
cally equivalent to a single bank in a stack. The chips in
the same rank in a sub-ranked memory system are log-
ically equivalent to a DRAM die in a stack. The chips
in the same lane (i.e., the same chip in different ranks)
in a sub-ranked memory system are logically equivalent
to all the banks in a channel in a stack. Due to the
one-to-one correspondence of a chip, rank, and lane in
sub-ranked memory system to a DRAM bank, DRAM
die, and channel in a stack, respectively, Parity Helix
can be applied directly to sub-ranked memory systems.

In the above discussions, single-dimensional faults de-
velop along only two dimensions for both die-stacked
DRAMs (i.e., across channels and across horizontal dies)
and 2D DRAMs (i.e., across lanes and across ranks).
However, as described in Section Parity Helix is
generalizable to even those memory systems that may
experience single-dimensional faults along arbitrary num-
ber of dimension. Figure shows the stripes within
a memory slice for memories where single-dimensional
faults can occur along three different dimensions - X, Y,
and 7Z dimensions. Figure |L3| shows that each stripe is
still similar to a helix, with the difference that each ring
in the helix is translated along the X and Y dimensions
with respect to other rings.

7.2 Comparison against DRAM Manufacturer
Side Techniques

Parity Helix is an architectural technique to enhance
memory reliability. Many known techniques at the man-
ufacturer side can also improve memory reliability. How-
ever, Parity Helix complements these techniques. For
example, while defect testing and burn-in reduces early-
life DRAM failures, Parity Helix reduces DRAM life-
time failures. While DRAM circuit-level improvements
also enhances DRAM reliability, architectural-level er-
ror resilience techniques, such as Chipkill Correct, are
still needed for conventional 2D DRAMs to achieve the
additional reliability to satisfy the needs of data centers
and supercomputers; this is despite the fact that 2D
DRAMs have undergone many decades of circuit-level
improvements. Similarly, we expect Parity Helix to pro-
vide the additional reliability needed by mission-critical
systems with die-stacked DRAMs.

A channel

DRAM DRAM
Dies - 11 Dies
1

A channel

TSVs TSVs

Figure 14: A horizontally partitioned stack (left)
requires a different internal wire routing per die.
In comparison, all DRAM dies are identical in a
vertically partitioned stack (right).

It may also be possible to redesign memory systems
such that faults only occur along one dimension. For ex-
ample, one can design stacks using the alternative orga-
nization where a channel consists of a horizontal group
of banks that lie within the same die; as such, both
the channel fault and die fault affect only the same di-
mension. However, redesigning memories comes at the
cost of losing many of the advantages of the original de-
sign. For example, the horizontal channel organization
requires all banks in each die in the stack to connect
to a set of data/address TSVs dedicated to the die; as
shown in the left half of Figure this requires a differ-
ent wire routing within different dies in the stack and,
therefore, a different die mask per die in the stack, which
is expensive. Instead of requiring multiple DRAM die
masks, the horizontal channel organization can alterna-
tively pay the cost of connecting every bank in a die
to every data/address TSVs in the stack and then later
disconnecting the unwanted connections (e.g., by blow-
ing fuses). However, the DRAM process allows only a
few metal layers [41]; this all-to-all connection compli-
cates intra-die routing for stacks with a large number
of dies and channels. The more widely supported ver-
tical channel organization, in comparison, allows every
bank to connect to only a single set of data/address
TSVs while requiring a single die mask (see right half
of Figure . Parity Helix gives the option of improv-
ing reliability without modifying DRAM design.

8. CONCLUSION

Memory is fast becoming the power and performance
bottleneck in current and emerging computer systems.
The die-stacked DRAM technology is a promising so-
lution to address the memory bottleneck. However,
die-stacked DRAMs pose new challenges for memory
error resilience because they are vulnerable to large-
granularity faults along different physical dimensions.
We propose Parity Helix, a general low-overhead tech-

nique to protect against single-dimensional faults in multi-

dimensional memory systems that shares the same error

correction resources across all dimensions. Parity He-
lix is most effective for memory systems where every
fault can be mapped to a single dimension such that
each fault affects only one dimension at a time. When
applying Parity Helix to die-stacked DRAMs, our eval-
uation shows that Parity Helix reduces memory energy
per data access by 21%, on average, and by up to 45%
compared to the baseline scheme of maintaining ded-
icated error correction resources for each dimension;
Parity Helix also increases available data capacity by
16.7% compared to this baseline. Compared to protect-
ing against only channel fault but not DRAM fault, the
strongest level of protection in prior works, Parity Helix
incurs only 1.0% performance overhead.

9. ACKNOWLEDGMENT

This work was supported in part by NSF and Cisco.
The authors would like to thank the anonymous review-
ers for their helpful feedback.

10. REFERENCES

(1] B. Giridhar, M. Cieslak, D. Duggal, R. Dreslinski, H. M.
Chen, R. Patti, B. Hold, C. Chakrabarti, T. Mudge, and
D. Blaauw, “Exploring dram organizations for
energy-efficient and resilient exascale memories,” in
Proceedings of SC13: International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’13, (New York, NY, USA), pp. 23:1-23:12,
ACM, 2013.

[2] A. N. Udipi, N. Muralimanohar, N. Chatterjee,
R. Balasubramonian, A. Davis, and N. P. Jouppi,
“Rethinking dram design and organization for
energy-constrained multi-cores,” in Proceedings of the 37th
Annual International Symposium on Computer
Architecture, ISCA ’10, (New York, NY, USA),
pp. 175-186, ACM, 2010.

[3] D. H. Yoon, J. Chang, N. Muralimanohar, and
P. Ranganathan, “BOOM: Enabling mobile memory based
low-power server DIMMs,” in Computer Architecture
(ISCA), 2012 39th Annual International Symposium on,
pp. 25-36, June 2012.

[4] D. H. Yoon, M. K. Jeong, and M. Erez, “Adaptive
granularity memory systems: A tradeoff between storage
efficiency and throughput,” in Proceedings of the 38th
Annual International Symposium on Computer
Architecture, ISCA ’11, (New York, NY, USA),
pp. 295-306, ACM, 2011.

[5] J. T. Pawlowski, “Hybrid Memory Cube (HMC),” Hot
Chips 23, 2011.

[6] M. O’Connor, “Highlights of the High Bandwidth Memory
(HBM) Standard,” 2014.
http://www.cs.utah.edu/thememoryforum/mike.pdf.

[7] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic
Rays Don’t Strike Twice: Understanding the Nature of
DRAM Errors and the Implications for System Design,”
SIGARCH Comput. Archit. News, pp. 111-122, 2012.

[8] V. Sridharan and D. Liberty, “A study of dram failures in
the field,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and
Analysis, SC ’12, (Los Alamitos, CA, USA), IEEE
Computer Society Press, 2012.

[9] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard,
and S. Gurumurthi, “Feng shui of supercomputer memory:
Positional effects in dram and sram faults,” in Proceedings
of SC13: International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 13,
(New York, NY, USA), pp. 22:1-22:11, ACM, 2013.

[10] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B.
Ferreira, J. Stearley, J. Shalf, and S. Gurumurthi, “Memory

11]

(12]

13]

(14]

(15]

(16]

(17]

(18]

(19]

20]
(21]

(22]

23]

[24]

25]

(26]

errors in modern systems: The good, the bad, and the
ugly,” in Proceedings of the Twentieth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 15, (New
York, NY, USA), pp. 297-310, ACM, 2015.

D. H. Yoon and M. Erez, “Virtualized and flexible ecc for
main memory,” in Proceedings of the Fifteenth Edition of
ASPLOS on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XV, (New
York, NY, USA), pp. 397-408, ACM, 2010.

S. Li, D. H. Yoon, K. Chen, J. Zhao, J. H. Ahn, J. B.
Brockman, Y. Xie, and N. P. Jouppi, “Mage: Adaptive
granularity and ecc for resilient and power efficient memory
systems,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and
Analysis, SC ’12, (Los Alamitos, CA, USA), pp. 33:1-33:11,
IEEE Computer Society Press, 2012.

S. Li, K. Chen, M.-Y. Hsieh, N. Muralimanohar, C. D.
Kersey, J. B. Brockman, A. F. Rodrigues, and N. P.
Jouppi, “System implications of memory reliability in
exascale computing,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking,
Storage and Analysis, SC 11, (New York, NY, USA),

pp. 46:1-46:12, ACM, 2011.

J. Sim, G. H. Loh, V. Sridharan, and M. O’Connor,
“Resilient die-stacked dram caches,” in Proceedings of the
40th Annual International Symposium on Computer
Architecture, ISCA 13, (New York, NY, USA),

pp. 416-427, ACM, 2013.

P. Nair, D. Roberts, and M. Qureshi, “Citadel: Efficiently
protecting stacked memory from large granularity failures,”
in Microarchitecture (MICRO), 2014 47th Annual
IEEE/ACM International Symposium on, pp. 51-62, Dec
2014.

H. Jeon, G. Loh, and M. Annavaram, “Efficient ras support
for die-stacked dram,” in Test Conference (ITC), 2014
IEEE International, pp. 1-10, Oct 2014.

“JEDEC STANDARD: High Bandwidth Memory (HBM)
DRAM,” 2013. http://www.jedec.org/standards-
documents/results/jesd235.

“Hybrid Memory Cube Specification 2.0,” 2014.
http://www.hybridmemorycube.org/specification-v2-
download-form/.

D. A. Patterson, G. Gibson, and R. H. Katz, “A case for
redundant arrays of inexpensive disks (raid),” in
Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’88, (New
York, NY, USA), pp. 109-116, ACM, 1988.

J. Kim and Y. Kim, “HBM: Memory Solution for
Bandwidth-Hungry Processors,” Hot Chips 26, 2014.

Tezzaron, “Our Technology 101.”
http://www.tezzaron.com/about-us/our-technology-101/.

W. Sun, W. Zhu, F. Che, C. Wang, A. Sun, and H. Tan,
“Ultra-thin die characterization for stack-die packaging,” in
Electronic Components and Technology Conference, 2007.
ECTC °07. Proceedings. 57th, pp. 1390-1396, May 2007.

H. Guojun, L. Jing-en, and X. Baraton, “Characterization
of silicon die strength with application to die crack
analysis,” in Electronic Manufacturing Technology
Symposium (IEMT), 2008 33rd IEEE/CPMT
International, pp. 1-7, Nov 2008.

“EMC CLARIiiON RAID 6 Technology: A Detailed
Review,” 2007.
http://www.emc.com/collateral/hardware/white-
papers/h2891-clariion-raid-6.pdf.

M. Blaum, J. Brady, J. Bruck, and J. Menon, “Evenodd: an
efficient scheme for tolerating double disk failures in raid
architectures,” Computers, IEEE Transactions on, vol. 44,
pp- 192-202, Feb 1995.

P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman,
J. Leong, and S. Sankar, “Row-diagonal parity for double
disk failure correction,” in In Proceedings of the 3rd
USENIX Symposium on File and Storage Technologies

27]

28]

(29]

(30]

(31]

(32]
(33]

(34]
(35]

(36]

(37)

(38]

(39]

[40]

[41]

(FAST 04, pp. 1-14, 2004.

C. Wu, X. He, G. Wu, S. Wan, X. Liu, Q. Cao, and C. Xie,
“Hdp code: A horizontal-diagonal parity code to optimize
i/o load balancing in raid-6,” in Dependable Systems
Networks (DSN), 2011 IEEE/IFIP 41st International
Conference on, pp. 209—220, June 2011.

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,

C. Wilkerson, K. Lai, and O. Mutlu, “Flipping bits in
memory without accessing them: An experimental study of
dram disturbance errors,” in Proceeding of the 41st Annual
International Symposium on Computer Architecuture,
ISCA ’14, (Piscataway, NJ, USA), pp. 361-372, IEEE
Press, 2014.

M. K. Qureshi and G. H. Loh, “Fundamental latency
trade-off in architecting dram caches: Outperforming
impractical sram-tags with a simple and practical design,”
in Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-45,
(Washington, DC, USA), pp. 235-246, IEEE Computer
Society, 2012.

T. Drane, W.-c. Cheung, and G. Constantinides, “Correctly
rounded constant integer division via multiply-add,” in
Clircuits and Systems (ISCAS), 2012 IEEE International
Symposium on, pp. 1243-1246, May 2012.

N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim,
A. G. Saidi, and S. K. Reinhardt, “The M5 Simulator:
Modeling Networked Systems,” MICRO, 2006.

“CACTI 5.3.” http://quid.hpl.hp.com:9081/cacti.

X. Jian and R. Kumar, “ECC Parity: A technique for
efficient memory error resilience for multi-channel memory
systems,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage
and Analysis, SC ’14, (Piscataway, NJ, USA),

pp. 1035-1046, IEEE Press, 2014.

“NAS Parallel Benchmarks.”
http://www.nas.nasa.gov/publications/npb.html.

“SPLASH-2x.”
http://parsec.cs.princeton.edu/parsec3-doc.htm#splash2x.

K. Chen, S. Li, N. Muralimanohar, J.-H. Ahn,

J. Brockman, and N. Jouppi, “Cacti-3dd: Architecture-level
modeling for 3d die-stacked dram main memory,” in
Design, Automation Test in Europe Conference Ezxhibition
(DATE), 2012, pp. 33-38, 2012.

N. Jouppi, A. Kahng, N. Muralimanohar, and V. Srinivas,
“Cacti-io: Cacti with off-chip power-area-timing models,” in
Computer-Aided Design (ICCAD), 2012 IEEE/ACM
International Conference on, pp. 294-301, Nov 2012.

“University of Maryland Memory System Simulator
Manual.”
http://www.eng.umd.edu/~blj/dramsim/v1/download/
DRAMsimManual.pdf.

J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing
technology challenges,” in Proceedings of the 9th
International Conference on High Performance Computing
for Computational Science, VECPAR’10, (Berlin,
Heidelberg), pp. 1-25, Springer-Verlag, 2011.

D. H. Yoon, M. K. Jeong, M. Sullivan, and M. Erez, “The
dynamic granularity memory system,” in Proceedings of the
39th Annual International Symposium on Computer
Architecture, ISCA ’12, (Washington, DC, USA),

pp- 548-559, IEEE Computer Society, 2012.

Y .-B. Kim and T. Chen, “Assessing merged dram/logic
technology,” in Clircuits and Systems, 1996. ISCAS ’96.,
Connecting the World., 1996 IEEE International
Symposium on, vol. 4, pp. 133—-136 vol.4, May 1996.

AMD, the AMD Arrow logo, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. Other product
names used in this publication are for identification purposes
only and may be trademarks of their respective companies.
(©2015 Advanced Micro Devices, Inc. All rights reserved.

