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Abstract—

As the amount of digital data the world generates explodes,
data centers and HPC systems that process this big data will
require high bandwidth and high capacity main memory. Un-
fortunately, conventional memory technologies either provide
high memory capacity (e.g., DDRx memory) or high bandwidth
(GDDRx memory), but not both. Memory networks, which
provide both high bandwidth and high capacity memory by
connecting memory modules together via a network of point-
to-point links, are promising future memory candidates for
data centers and HPCs. In this paper, we perform the first
exploration to understand the power characteristics of memory
networks. We find idle I/O links to be the biggest power
contributor in memory networks. Subsequently, we study idle
I/O power in more detail. We evaluate well-known circuit-
level I/O power control mechanisms such as rapid on off,
variable link width, and DVFS. We also adapt prior works
on memory power management to memory networks. The
adapted schemes together reduce I/O power by 32% and 21%,
on average, for big and small networks, respectively. We also
explore novel power management schemes specifically targeting
memory networks, which yield another 29% and 17% average
I/O power reduction for big and small networks, respectively.

Keywords-Memory Power Management, Hybrid Memory
Cube, Point-to-point Network, High-speed Memory 1/0

I. INTRODUCTION

Processor architectures for data centers and HPC systems
have become increasingly throughput-oriented and many
core. As the number of cores per processor increases, so does
the amount of memory capacity and bandwidth required per
processor to match the core count. Conventionally, memory
systems scale in capacity by adding more memory modules
to shared memory buses. However, multiple devices sharing
a bus negatively impacts I/O signal integrity [1] and thus
limits memory capacity and bandwidth [2].

Instead of sharing multiple memory modules on the same
memory bus, a memory network [3], [4] connects one
memory module to another via a point-to-point (P2P) link
dedicated to each pair of modules. By adding memory
modules via an expandable network of P2P links, a memory
network provides similar or higher capacity scaling as con-
ventional high-capacity DDRx memories. However, by only
connecting a minimum number of (i.e., two) devices per
link, P2P links improves signal integrity [1] and, therefore,
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allow high I/O frequencies and thus bandwidth. For example,
the Hybrid Memory Cube (HMC) [5], an emerging memory
network technology, increases I/O frequency by up to 8X
compared to DDR4, the latest generation memory with a
shared bus interface. Due to providing high bandwidth and
capacity, memory networks will likely benefit future data
centers and HPC systems.

In addition to high memory capacity and bandwidth,
large-scale systems also require high memory energy effi-
ciency. Memory systems consume 25% - 40% of the total
data center power [6]. In a projection based on the current
level of power efficiency, memory power alone will consume
3.5X the total power budget of future exascale systems [7].

In this paper, we perform the first exploration to un-
derstand the power characteristics of memory networks.
We study different memory network topologies and sizes
and report a detailed breakdown of idle and active power
consumption among different memory components. We find
that idle I/O power is the biggest source of memory net-
work power consumption. Subsequently, we study idle I/O
power in more detail. We evaluate various well-known I/O
power control mechanisms such as DVFS, variable link
width (VWL), rapid on off (ROO), and their combinations.
We adapt prior works on memory power management to
manage I/O power in memory networks. Since no prior
power management works have been proposed in the con-
text of memory networks, we refer to our adaptation of
prior schemes collectively as network-unaware management.
We find that network-unaware management reduces I/O
power by 32% and 21%, on average, for big and small
networks, respectively. However, idle I/O power still remains
the top power contributor. Consequently, we explore and
propose novel network-aware management policies; they
provide 29% and 17% 1/O power reduction for big and
small networks, respectively, compared to network-unaware
management. This paper makes the following contributions:

o The first exploration to understand memory network

power characteristics. We identify idle I/O as the
biggest power contributor.

o The evaluation of various circuit-level I/O power con-

trol mechanisms, such rapid on off, variable link width,
DVEFS, and combinations thereof, and analysis of their
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Figure 1. Left: conventional memory systems. Right: Memory networks.
relative effectiveness.

o The first adaptation of prior works on memory power
management to memory networks; average I/O power
is reduced by 32% and 21% for big and small networks,
respectively. We also show that the choice of network
topology (e.g., linear, tree, etc.) significantly affects the
effectiveness of power management.

e The first network-aware memory power management,
which yields another 29% and 17% average 1/O power
reduction for big and small networks, respectively.

II. BACKGROUND

Memory system capacity is increased by adding memory
modules. Different types of memory systems differ in terms
of how memory modules are added to the system.

A. Conventional Memory Systems

Conventional memory systems increase memory capacity
by adding more memory modules to shared memory buses,
as shown in the left half of Figure 1. However, increasing the
number of electrical devices on a bus reduces signal integrity
[1], [2]; this limits the number of memory modules that can
be reliably connected to a bus and, therefore, the maximum
memory capacity per bus. Having more memory buses per
processor increases the maximum capacity and bandwidth
of a memory system, but requires more I/O pins on the
processor chip. Unfortunately, the number of I/O pins per
processor is limited [8] since I/O pins increase processor
area and, therefore, cost, which in turn limits the maximum
capacity and bandwidth of conventional memory systems.
As such, conventional memory systems either provide high
bandwidth but low capacity (e.g., GDDRx memory with P2P
data I/O pins that allow up to 14 Gbps but not sharing) or
high capacity but low bandwidth (e.g., DDRx memory with
data I/O pins that allow up to only 3.2 Gbps but sharing).

B. Memory Network

In addition to memory, each memory module in a memory
network also contains buffering/routing logic to communi-
cate with other memory modules via high-speed P2P links.
This allows a memory network to increases its capacity via a
network of P2P links, as shown in the right half of Figure 1.
This expandable network of high-speed P2P links provides
both high bandwidth and high capacity memory.
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Figure 2. HMC network example.
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A well-known example of a memory network module
is the HMC!. An HMC consists of multiple DRAM dies
stacked on top of a logic die using TSVs (through-silicon-
vias) [5]. The DRAM dies provide memory capacity, while
the logic die implements network routing logic and I/O
circuitry [5]. An HMC can provide up to 30 Gbps [5] of I/O
frequency; in comparison, current DDR4 DIMMs, the latest
memory modules found in conventional memory systems,
only support an I/O frequency of up to 3.2Gbps per lane
[10]. HMCs also improve memory energy per bit by 3X
compared to DDR4 [11]. Due to the many benefits of HMCs,
we explore memory networks in the context of HMCs.

Figure 2 shows an example of an HMC network. A
network of HMCs communicates via unidirectional links and
a packet-based protocol [5], which are commonly used to
support high-speed I/O communication; they are also used
by buffer-on-board memory systems [9], for example. We
refer to unidirectional links that send data away from and
toward the processor as request links and response links,
respectively. A read request packet consists of a single 16B
Alit (i.e., minimum traffic flow unit), while write request and
read response packets contain five flits, assuming 64B lines.

III. ANALYZING POWER CHARACTERISTICS OF
MEMORY NETWORKS

In this paper, we perform the first exploration to under-
stand the power characteristics of memory networks.

A. Network Topologies

We evaluate minimally connected network topologies. For
a given set of networked memory modules, a minimally con-
nected topology minimizes the average and worst-case hop
distances between the processor and its memory modules by
connecting every available link to a new module, instead of
spending them on already connected modules. A minimally
connected topology is also acyclic and, therefore, does not
require deadlock or livelock avoidance logic.

The HMC standard supports high-radix HMCs with four
full links (i.e., eight unidirectional links) and low-radix
HMCs with two full links [5]. We evaluate networks con-
sisting of only high-radix HMCs, of only low-radix HMCs,
and a mixture of both. Figure 3 shows the topologies we
examine. We evaluate the ternary tree, which minimizes

'As another example, a memory network module could be a few high
bandwidth (e.g., GDDRx) memory chips attached to a buffer/router chip,
such as a buffer-on-board chip [9], which connects to other such memory
network modules via P2P links.



DDRx-like

Ternary tree

Processor

Topologies studied.

Processor

Figure 3.

network hop distance, using high-radix HMCs. We evaluate
the daisy chain using only low-radix HMCs to minimize
HMC area. For a mixture of both types of HMCs, we
evaluate the star topology which grows by adding rings of
nodes equidistant from the processor; for smaller network
sizes, star offers the same hop distances as the ternary tree
while requiring fewer high-radix HMCs. We also evaluate
another mixed-HMC topology that scales in capacity by
adding rows of memory packages, similar to how DDRx
DIMMs scale in capacity by adding rows or ranks of DDRx
memory packages, for potential ease of adoption; we refer
to this as the DDRx-like topology.

B. HMC Modeling

We use the HMC power model in [12] to evaluate high-
radix HMCs. In [12], high radix HMCs with 12.5Gbps I/O
data rate per lane consume 13.4W of peak power. [12]
models peak power by attributing 43%, 22%, and 35% of
the peak power of an HMC to the peak power of the DRAM
dies, the logic part of the logic die (which we simply refer
to as logic), and the I/O links, respectively; for idle power,
the DRAM dies consume 10% of its peak power when idle,
logic consumes 25% of its peak power when idle, while
idle I/O power (i.e., when not transmitting application data)
is same as active I/O power. Idle and active /O power
are similar because high-speed links need to continuously
transmit data even when idle to maintain synchronization
between the transmitter and receiver [5], [18]. To evaluate
low-radix HMCs, we assume that memory peak power is
proportional to memory bandwidth and, therefore, assume
the peak power of low-radix HMCs to be half of 13.4W; we
also assume the same relative power breakdown as above.

We use DRAMSim2 and the parameters in Table I to
model the performance of DRAM array accesses and modify
GEMS to model I/O link performance. For the I/O links, we
assume that each link controller contains 128 buffer entries
and prioritize reads over writes, as writes do not typically
lie along the critical path of execution. We model 3.2ns
SERDES link latency. To model routing within an HMC, we
assume a pipelined router with 0.64ns (the minimum transfer

Table I
HMC DRAM ARRAY PARAMETERS

Capacity per HMC/vaults per HMC 4GB/32
Vault data rate/IO width/buffer entries 2Gbps/X32/16
page policy/line address mapping close/interleaved
tCL/tRCD/tRAS/tRP/tRRD/tWR(ns) 11/11/22/11/5/12

Table II
PROCESSOR MICROARCHITECTURE

16 cores, 3GHz, 2-issue OO0
Core 64 ROB entries, 64B cache line size
L1 d-cache, i-cache 2-way, 64kB, 1 cycle
Private L2 cache 8-way, 512kB, 3 cycles
Shared L3 cache 32-way, 32MB, 20 cycles

latency of a single flit over the evaluated links) clock period
and four cycles latency.

C. Processor and Workloads

We model a 16-core X86 processor in GEMS. Detailed
architectural parameters used for GEMS5 simulation are listed
in Table II. Since different memory channels are physically
independent from one another and bandwidth utilization is
often uniformly distributed across channels by interleaving
adjacent memory across channels [13], we evaluate a single
HMC channel with little loss of generality; we leave the
exploration of power implication of any potential inter-
channel interactions to future work.

We evaluate seven HPC workloads and seven cloud com-
puting workloads using full-system simulation. The average
memory footprint of all of our workloads is 17GB. The
HPC workloads include 16-threaded wa.D, lu.D, bt.D,
sp.D, cg.D, mg.D, and ¢s.D from NASBench. The cloud
workloads are mixed application workloads each consisting
of four applications, at least one of which is a parallel
SPLASH2X benchmark and the remaining of which are
SPEC2006 benchmarks; only native or reference inputs are
used. Each parallel application runs on four threads, while
each SPEC application runs as four independent instances.
Table III details the workload composition for the mixed
workloads; the applications in each workload appear in
the order of their invocation, which determines memory
allocation as we delay the invocation of each subsequent
application or instance by one simulated second. We fast
forward each workload until all multi-threaded application(s)
in each workload have completed their initialization, as

Table III
MIXED WORKLOAD COMPOSITION

mixA 4 bwaves, 4 cactusADM, 4 wrf, ocean_cp
mixB | 4 mcf, 4 GemsFDTD, 4T barnes, 4T radiosity
mixC 4 omnetpp, 4 mcf,4 wrf, 4T ocean_cp
mixD 4 sjeng, 4 cactusADM,4T radiosity, 4T fft
mixE 4 cactusADM, 4 sjeng,4 wrf, 4T fft
mixF 4 cactusADM, 4 bwaves,4 sjeng, 4T fft
mixG 4 mcf, 4 omnetpp,4 astar, 4T fft
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Figure 4. Workload memory access characteristics.

indicated by the simulated OS console output, and then by
another 20 simulated seconds to warm up the caches; the
total fast-forward period is 73 seconds, on average, and up to
218 seconds. We evaluate each workload in cycle-accurate
mode for the next 10ms of simulated time. Since there is
a wide range in the memory footprint of our workloads,
each workload is evaluated for a memory network whose
size matches the memory footprint of the workload. For our
evaluations, we map the i*" contiguous 4GB of physical
pages (we use 4GB HMCs in our evaluation) to the ‘"
HMC in the network (see Figure 3 for the location of HMC
1); therefore, the average number of HMCs per workload
is [17/4] = 5. Since memory networks can support a
large number of memory modules, we also perform a big
network study by mapping the i* contiguous 1GB to the i
HMC. Figure 4 shows the cumulative fraction of memory
accesses by the i'" gigabyte of memory address space of
each workload during the cycle-accurate simulation interval;
memory traffic distribution within the networks can be
deduced through Figure 3 and 4.

D. Key Findings

Figure 5 shows the average power consumption per mem-
ory module; “Idle I/O” and “Active I/O” are calculated
as total energy consumed by links while idle and active,
respectively, divided by the total number of HMCs and
by time. The first key observation is that I/O power is
the highest power contributor in memory networks; 1/O
consumes, on average, 73% of the memory network power.
There are two reasons why I/O power dominates. First, each
memory request in a memory network accesses a DRAM
die once but traverses multiple links (see Figure 6), which
contributes to I/O having much higher power than DRAM.
Second, even within a single module, a major fraction of
energy per memory access is due to I/O. For example,
moving data off package consumes roughly twice as much
energy per bit as moving data within package from DRAMs
to the logic die [14]. As another example, I/O consumes
40% of access energy in DDR3 DRAMs [15].

There are several reasons why I/O power is high even
for a single memory module. First, due to the high area
cost of I/O pins, memory I/O width is often many times
narrower than the DRAM array data bus width. Therefore,
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I/O must operate at much higher frequencies than the DRAM
arrays to match the bandwidth and thus consume high
power. Another reason is that significant power is required
to maintain signal integrity for off-chip communication. For
example, transmitter output impedance must closely match
the characteristic impedance of the off-chip transmission
channel (i.e., a PCB trace) to minimize I/O signal reflection;
impedance matching is typically implemented by terminat-
ing the transmitter output using a similar impedance (see
Figure 7). Unfortunately, PCB traces typically have low
characteristic impedance (around 502) to keep ohmic power
loss low; the matching low impedance termination results
in a low impedance connection to ground and thus high
power consumption (e.g., (1V)2/(5092) = 20mW per lane
assuming 1V signal voltage or 20 x 32 = 0.64W per HMC
full link). Receivers also require similar overheads.

The second key observation is that when further breaking
down power into idle and active, idle I/O power is the
highest power contributor in memory networks; it accounts
for 53% and 67% of total memory network power in the
small and big network studies, respectively (see black and
orange points in Figure 8). To understand the sources of
high idle I/O power, we define channel utilization as the
bandwidth utilization of the full link that connects the
processor to a memory network and define link utilization
as the average bandwidth utilization across all links in a
network. Figure 9 shows the channel and link utilizations
of the different workloads under different topologies. As
expected, the fraction of total network power taken up by

PCB trace
(transmission channel)

Figure 7. Some major causes of high I/O power.
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Figure 9. Average channel and link utilization.
idle I/O power increases when channel bandwidth utilization
decreases; for example, under sp.d, which has the lowest
channel utilization, idle I/O power is also the highest (see
Figure 8). However, idle I/O power still accounts for 50%
of total memory network power even for mix B, which has
75% average channel utilization; in fact, the average channel
utilization across our evaluated workloads is high - 43%.
Idle I/O power remains high despite high channel utilization
because memory traffic attenuates across the network; as
such, average link utilization continues to be low (see the
dotted lines in Figure 9) even when channel utilization is
high (see data points without the dotted lines).

Since idle I/O power accounts for over half of total
memory network power, we will explore idle I/O power
management for memory networks in the rest of the paper.

IV. I/O POWER CONTROL MECHANISMS

Many circuit-level mechanisms exist to dynamically re-
duce I/O power during low utilization, with different power
and performance tradeoff characteristics. Below we discuss
the mechanisms we study in this paper.

A. Rapid On Off Links

In conventional DRAMs, I/O is commonly turned off
(i.e., put in an inaccessible low power state) when idle to
reduce idle power. However, once turned off, an I/O link
needs to first be woken up before it can be accessed again,
leading to performance overheads. Conventional DRAMs
typically require 10-25ns to wake up the I/O [10], depending
on the off-state power. Both the wakeup latency and off
state power should ideally be zero. This is difficult for
two reasons, however. First, to wake up a link, the link
transmitter must first resynchronize with the receiver before
data can be reliably transmitted. Second, increasing the
current from the off state level (where current i ~ 0) to
nominal operating level typically requires many nanoseconds

since current change is opposed by a back electromagnetic
force (EMF) that is proportional to the rate of current change
(i.e., EMF = Ldi/dt); since I/O operating current is high
(due to the high operating power of I/O), di/dt is also high.

To model ROO, we assume 14ns wakeup latency [16] per
unidirectional® link and 1% power when off [16]. We also
examine 20ns wakeup latency [18] for sensitivity analysis.

B. Dynamic Voltage Frequency Scaling

Another mechanism to reduce I/O power during low
utilization is to keep the link on but reduce I/O bandwidth
via dynamic voltage frequency scaling (DVFES) [16]. Since
dynamic energy is oc CV2 f, DVFS reduces dynamic energy
per bit in addition to idle power, unlike ROO, which only
reduces idle power. DVFS avoids the long wakeup latency
of ROO; however, DVFS increases SERDES latency since
SERDES - the circuit that converts parallel data input into
a high-speed serial data stream for transmission - is clocked
by the I/O clock as well [16]. DVFS also requires significant
latency to adjust voltage since changing voltage requires a
current draw that is proportional to the rate of change (i.e.,
i=Cdv/dt); to adjust voltage quickly (e.g., small dt), a more
heavy-weight on-chip voltage regulator capable of supplying
much higher current than is needed during regular operations
is required, which incurs area and power overheads. As such,
on-chip voltage regulators typically require long latency to
adjust voltage (e.g., 0.5us [19]). Due to the long voltage
scaling latency, DVFS can incur higher queuing latency
overheads than ROO for a long burst of accesses.

We model link voltage switching latency as 0.5us. To
ensure connectivity during voltage scaling, we assume that
the sixteen lanes per link are split into two bundles of
eight lanes each, where each bundle has separate voltage
rails such that DVFS is only applied to one bundle at a
time. This leads to up 3us to complete voltage scaling for
a link; 1 us to reduce operating link width to half (see
Section IV-C), 1 us to DVFS the two bundles, and 1 us
to resume full link width. We model the performance and
power of DVFS during steady-state operations using [16] by
evaluating DVFS modes that provide 100%, 80%, 50%, and
14% bandwidth and provide 0%, 30%, 65%, and 92% power
reduction, respectively; the modes are selected such that each
subsequent mode provides roughly equal amount of total
link power reduction (e.g., 30%) as the previous mode. The
lowest power mode operates only a single bundling of eight
lanes at the minimum I/O operating voltage (i.e., Vipin)-

C. Variable Width Links

Another way to reduce I/O power is to reduce the number
of active I/O lanes; we refer to links that can vary its number
of active lanes as variable width links (VWL). VWLs are
used in Infiniband and YARC switches [17] and are also

2Each unidirectional HMC link can be individually power controlled [5],
like the unidirectional links in Infiniband and YARC switches [17]).



supported by HMCs [5]. While VWL reduces I/O power
at the cost of reduced I/O bandwidth like DVFS, VWL
provides distinct tradeoffs from DVFS. VWL does not incur
the long SERDES latency overheads of DVFS; however, it
provides less power reduction because it does not reduce
dynamic energy per bit. When modeling VWL links, we
allow the number of active lanes per link to be reduced
from 16 down to 8, 4, or 1. We calculate the power when [
lanes are on as (I +1)/(16 + 1) of a full power link, as I/O
clock power is similar to power of a lane [16]. We assume
lus latency for changing the number of active lanes [17].

V. NETWORK-UNAWARE MANAGEMENT

Our first step in exploring how to utilize the above 1/O
power control mechanisms to reduce memory network power
is to adapt prior works on memory power management
to memory networks. Since no prior power management
work has been previously proposed in the context of a
memory network, we refer to our adaptation of prior works
as network-unaware power management. We will explore
network-aware power management in Section VL.

In this study, we explore hardware power management
techniques that do not require software/OS assistance or
cross-layer optimization. To manage VWL and DVFS links,
we adapt [20], which uses hardware counters to simulta-
neously estimate the aggregate queuing and transmission
latency overheads of read packets over a link for all pos-
sible link bandwidth configurations to adjust link bandwidth
accordingly. To manage ROO links, we incorporate aspects
of [21] and [22]; [21] describes a hardware mechanism to
find the optimal power ROO mode for a given memory
latency overhead constraint, while [22] hides wakeup latency
overheads for responses from DRAM. Finally, to provide
predictable worst-case performance overheads, we limit av-
erage memory latency overhead by incorporating feedback
control and performance violation detection from [23].

Broadly, network-unaware management works as follows.
It seeks to reduce power while keeping the aggregate
memory read latency overhead of the network below an
allowable memory slowdown or AMS in short; a memory
network’s AMS is set as a user-tunable factor of «% times
the network’s aggregate memory read latency had all its links
always operated in full power mode, and thus is given in
units of time (as opposed to being an unit-less fraction). To
this end, each memory module uses a hardware counter to
track its aggregate DRAM read access latency. Each link
controller contains a hardware counter to measure the link’s
actual aggregate read packet latency and also counters to
estimate what the link’s aggregate latency might be had the
link always operated at full power. Using these values, each
memory module independently determines the appropriate
amount of AMS the module can have such that the network
as a whole obeys the network-level AMS as determined
by the user-settable factor «. Each module calculates its
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AMS periodically after each fixed time interval, referred
to as an epoch; we assume 100us epochs, similar to [20].
After calculating its AMS, each module divides the AMS to
among its various links; Section V-A details how to obtain
the AMS of each link at the end of each epoch. Each link
controller then sets its link to the lowest power mode whose
latency overhead is less than its AMS. Section V-B describes
how a link sets its power mode according to its AMS.
Finally, each link controller periodically checks whether its
current latency overhead exceeds its AMS [23]; if violation
is detected, the link switches to full power until end of the
epoch. Figure 10 summarizes the above.

A. Obtaining a Link’s Allowable Memory Slowdown (AMS)

We refer to the estimated aggregate memory latency of
a network or a module in an epoch had it operated in
full power as the network or module’s full power epoch
latency or FEL. Network-unaware management keeps ag-
gregate memory latency overhead in an epoch within a%
times the network’s FEL simply by requiring each module
independently keep its latency overhead within a% times the
module’s FEL. Specifically, network-unaware management
calculates the network-level AMS for the next epoch as:

AMSN (t41)=a% Y 7" > FELp,i—y 0 > (AELy,i—FELp.1)
=> a%-y e FELy,i—y o (AELp,i—FELp,.)]
=Y " AMSa(m,t+1) (D

Above, F'E'L,, ; stands for the full power epoch latency
of module m during epoch ¢; AEL,,; is the actual epoch
latency of m during epoch ¢, which is the actual measured
aggregate latency of m throughout ¢; AMS,,(m,t + 1) is
module m’s AMS for the next epoch.

Module m obtains AEL,, ; in Equation 1 by summing A)
m’s aggregate DRAM array read latency and B) aggregate
link latency for read packets (i.e., read request and read
response packets) during t. A) is the number of reads to
the module’s DRAM times DRAM access latency (e.g., 30ns
from Table I). B) is the sum of the latency of all read packets
passing through the links that connect the module upstream,
which we refer to as the module’s connectivity links; the link
latency of each read packet is obtained as the difference of
the departure time and the arrival time of the last flit of each
read packet. Module m obtains F'E'L,, ; in the same way as
AFEL,y,; except that B) is estimated using a delay monitor



and delay counter [20] per link configured to assume the link
always operates at full power. At the end of each epoch, each
module updates two additional hardware counters to record
S FELy; and Y\ (AEL,,; — FEL,,,), respectively.
Finally, each connectivity link of m receives an equal portion
of the module-level AMS.

B. Setting Link Power Mode according to the Link’s AMS

After receiving its AMS, each link controller sets its link
power mode for the next epoch as the minimum power
mode whose predicted latency overhead during the next
epoch is lower than or equal to the link’s AMS; we refer
to the predicted latency overhead of operating a link at a
particular low power mode during the next epoch as the
Future Latency Overhead or (FLO) of the given power mode
of the given link; the FLO of a given link’s given power
mode is calculated as the estimated aggregate latency of
operating the link at the given power mode during the current
epoch minus the link’s FEL during the current epoch.

We use the same method to estimate the FLO of VWL
and DVFS power modes during an epoch since VWL and
DVFS behave similarly. Each link uses a pair of hardware
latency counters from [20] (referred to as the delay monitor
and counter in [20]) to estimate the FLO of each available
VWL/DVES power mode of the link. For each DVFS low
power mode, we also add to this estimated FLO the SERDES
latency overhead of the power mode multiplied by the
number of read packets over the link during the epoch.

We estimate the FLO latency for ROO power modes by
adapting the idle interval histogram algorithm from [21]. The
ROO power modes we evaluate have idleness thresholds of
32ns, 128ns, 512ns, and 2048ns, where each ROO power
mode turns off a link after it has been idle for longer
than the power mode’s idleness threshold; the ROO power
mode with 2048ns threshold is considered the full power
mode (i.e., a ROO link always turns off after being idle for
2048ns). The idle interval histogram algorithm requires an
idle interval bucket for every ROO mode. At the end of
each link idle interval, the appropriate idle interval bucket
is incremented. At the end of the epoch, the algorithm
calculates the predicated latency overhead of a ROO mode
by summing from the 32ns idle interval bucket to the bucket
whose idle interval corresponds to that ROO mode, and
then multiplying the sum by an estimated average latency
overhead per wakeup. This average latency is wakeup la-
tency + wakeup latency*the average number of read packet
arrivals during wakeup; the latter number is estimated by
periodically sampling how many subsequent read packets
arrive during an amount of time equal to the wake up latency
after a periodically chosen read packet first arrives.

We discovered in our experiments that waking up a
request link can cause significant queuing latency overhead
in a later response link because read response packets are
much bigger (5X as many flits per packet, assuming 64B

lines) than read request packets; for example, if a queue
of N requests delayed in a waking request link all have the
same destination module, when they eventually arrive at and
then exit the DRAM array of the destination module, they
can translate to a queue that is effectively five times as long
at the destination module’s response link. To account for any
potential latency overhead that waking up a request link may
inflict on other links, we add an additional value of wakeup
latency*the average number of read packet arrivals during
wakeup when estimating the predicated latency overhead of
operating a request link under a given ROO power mode.

Finally, we estimate the FLO for VWL/DVES +ROO links
as the sum of the VWL/DVES power mode’s FLO and the
ROO power mode’s FLO.

C. Evaluation
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Figure 11. Per HMC power under network-unaware management.
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Figure 12. Average and maximum (error bar) performance overhead under
network-unaware management.

Figure 11 shows the average power per HMC under
network-unaware power management for VWL, ROO, and
VWL4ROO links® and also average power for full power
(FP) networks. On average across 336 comparisons (i.e.,
three circuit-level I/O power reduction mechanisms * two
values of a * four topologies * 14 workloads), network-
unaware management yields 14% average overall power
reduction for small networks. Average power reduction
increases to 24% for big networks; this is as expected since
idle I/O power is higher in big networks (see Figure 5).
The corresponding idle I/O power reduction is 32% and
21% for big and small networks, respectively. Figure 12

3We will evaluate DVES and DVFS+ROO links in Section VI-D.



shows that the throughput* overhead of network-unaware
power management. The maximum throughput degradation
for a = 2.5% and o = 5% are 3.2% and 5.1%, respectively,
which closely follow their respective «. This shows the
effectiveness of using memory latency overhead feedback
control to curb overall system performance overheads; the
occasional performance degradation in excess of « is due to
imperfect link latency overhead estimations using counters.
Memory power management provides star and the DDRx-
like topologies with the highest power reduction relative to
total network power. These topologies allow many modules
with cold memory ranges (see the flat line segments in
Figure 4) to go into very low link power modes; under daisy
chain, however, such modules still need to be frequently
traversed to provide access to modules with hot memory
content. Ternary tree, on the other hand, contains entirely
of high radix HMCs, with high logic and DRAM leakage
power (see Figure 5); as such, idle I/O power reduction as
a fraction of total network power is less pronounced.
Overall, idle I/O power still consumes 44% and 57% of
total power for the small and big networks, respectively, and
thus remains the top power contributor. One way to further
reduce idle I/O power is to increase the network’s AMS by
increasing «. Figure 11 shows that power reduction through
increasing « is very modest, only 3% on average when a%
goes from 2.5% to 5%; meanwhile, Figure 12 shows that
the average throughput degradation almost doubled from
0.9% to 1.7%. While 0.9% to 1.7% average system-level
performance overheads may be acceptably small, they are
not negligible. Further increasing o only further degrades
system-level performance for modest gains in power reduc-
tion. As such, new techniques need to be explored for further
power reduction while minimizing performance overheads.

VI. NETWORK-AWARE MANAGEMENT

One main problem with network-unaware management is
that busier links often operate in a lower power mode than
links with lower utilization. The left half of Figure 13 plots
the fraction of total link hours (i.e., analogous to machine

4Since every workload contains multi-threaded application(s), we use
FLOPS for workloads with floating point applications only and use memory
accesses per second for the rest (seven total).
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Figure 13. Left: Distribution of link hours spent in different VWL modes
(y-axis) by links of different utilizations (x-axis) under network-unaware
management. Right: Distribution under network-aware management.

hours) spent by links of different utilization levels for VWL
links under network-unaware management for big networks;
9% of total link hours are spent by links with 0-1% utiliza-
tion in 16-lane mode (i.e., the red segment in “0-1%" bar for
big networks); meanwhile, roughly the same total amount of
link hours are spent by links with 54+% utilization in 8-lane
mode (i.e., the combined height of the orange segments in
the last three bars for big networks). Intuitively, a busier
link should operate in a higher power mode since it incurs
more frequent and, therefore, higher total latency overhead
than a lower utilization link for operating at the same low
power mode. The counter-intuitive behavior is because a
more frequently accessed module often generates more AMS
than a less frequently accessed link; unfortunately, under
network-unaware management, the large amount of AMS
generated by a frequently-accessed module is also assigned
to that module, allowing it to often operate at equal or
lower power modes than infrequently accessed links. Ideally,
one would like to see a link hour distribution like one
shown in the right half of Figure 13 that increases the time
low utilization (e.g., 0-5% utilization) links spend in low
power modes by decreasing the time high utilization (10+%
utilization) links spend in low power modes; network-aware
power management obtains this distribution.

Memory networks also provide new opportunities to re-
duce link power at low performance cost. We observe that
for ROO links, multiple links along the access path can
wake up at the same time, instead of one at a time, to
enable aggressive ROO modes while minimizing wake up
overheads. We also observe that latency overheads at a
downstream link does not cause memory latency overhead
if an upstream response link is congested; had there been no
delay downstream, the packet would arrive at the congested
upstream response link sooner and wait longer in queue.

Network-aware management addresses and exploits the
above problems and opportunities. It builds on top of
network-unaware management: it also relies on Equation 1
to calculate network-level AMS and uses the same hardware
link counters for FLO estimation, etc. The difference is
that instead of each module independently obtaining its
AMS, network-aware management intelligently redistributes
the network-level AMS across the network to ensure that
busier links operate at no lower power modes than less
busy links; this is described in Section VI-A. Network-aware
management also completely hides the wakeup latency of
response links, and aggressively sets downstream response
links to lower VWL/DVFS modes when upstream response
links are congested, as will be described in Section VI-B
and Section VI-C, respectively.

A. Network-Aware Slowdown Redistribution

We propose redistributing AMS across the network such
that busier links always operate at higher or equal power
mode than less busy links. This allows the leftover AMS



in the former to be transferred to the latter to enable the
latter to operate in lower power modes. There are two chal-
lenges with network-aware slowdown redistribution. First,
determining the relative utilization of different links can be
challenging since link utilization can change even within an
epoch. Second, even when the relative utilization of different
links is known, there are still numerous ways to set link
power modes across the network such that busier links also
have have higher or equal power modes; an efficient and
effective selection method needs to be identified.

To address the first challenge, we observe that memory
traffic attenuates across the network from memory modules
closer to the processor to memory modules farther away
from the processor. This implies that among links of the
same type (i.e., request or response link), an upstream link
always have equal or higher utilization than its immediate
downstream link. To address the second challenge, we
observe that a distributed algorithm can exploit the fact
that each module is aware of its neighbors in a memory
network to make topology-aware power mode decisions
without having to first translate the physical topology into
a logical data structure. A distributed algorithm also divides
the computational and memory overheads over all modules,
resulting in low overheads per module.

Exploiting the above observations, we propose Iterative
Slowdown Propagation (ISP), a distributed message passing
algorithm that distributes AMS over the network through
several iterations (our evaluations cap total iterations at
three). Each iteration consists of two steps - scatter and
gather. ISP scatter redistributes unused AMS; ISP gather
collects unused AMS and other helpful statistics and en-
forces that an upstream link always be set to higher or equal
power mode than downstream links of the same type. Figure
14 illustrates the direction of message passing for these two
ISP steps. The final CLS (see Section V-A) at each link by
the end of ISP is used to select the power mode.

1) ISP Scatter: ISP scatter broadly works as follows.
At the i'" ISP iteration, only some links may still benefit
from receiving more AMS; we refer to a link previously
determined to potentially benefit from receiving more AMS
as a slowdown receiving candidate (SRC). Each link L
divides its unused AMS equally among all downstream
SRCs, or DSRCs, of the same type as L; since the latency
overhead of a low power mode is usually higher for busier
links, equal AMS distribution helps to converge to a global
link power mode selection where busier links select no lower
power modes. We describe ISP scatter in detail below.

At the beginning of ISP scatter, the head module contains
the total network-wide unused AMS (which is obtained
by ISP gather of the previous iteration, to be described
in Section VI-A2). The head module divides the unused
AMS by the total SRCs in the network to calculate a per
candidate slowdown (PCS) value and passes the PCS to the
link controllers of the head module’s connectivity links.

ISP Scatter >

Processor HMC HMC HMC

< ISP Gather

Figure 14. ISP message flow. Each HMC passes the same message packet
to each of its downstream/upstream neighbor(s) during ISP scatter/gather.

If a link is not an SRC, upon receiving a PCS message,
the link controller simply passes the received PCS value to
all downstream links of the same type.

If a link is an SRC, upon receiving a PCS message, the
link controller increases the link’s AMS by the received PCS
and selects (but not yet physically set) the lowest link power
mode whose FLO is below the updated AMS. Next, the
link controller passes PCS + (AMS — FLO)/DSRC as
the new PCS value to each immediate downstream link of
the same type; this effectively evenly distributes to these
downstream links any leftover AMS at an upstream link after
the upstream link selects its power mode. Lastly, the link
controller updates the link’s AMS as the FLO of the selected
power mode and also decides whether the link should be an
SRC during the next iteration of ISP scatter; it decides true if
the link has not already selected the lowest available power
mode and if PC'S + AMS is at least a big fraction (e.g.,
25%) of the next lower power mode’s FLO.

2) ISP Gather: ISP gather obtains for every link con-
troller its DSRC value and also obtains for the head module
the network-wide unused AMS via parallel reduction by
passing messages upstream. The DSRC values are obtained
via a parallel prefix sum reduction over the network in which
each leaf link controller passes ‘1’ if it is an SRC, ‘0’
otherwise, to the immediate upstream link controller of the
same type. Each non-leaf link controller accumulates the
values in the received messages, sets DSRC to this partial
sum, increments the partial sum by ‘1’ if the link is itself
an SRC, and passes the updated sum upstream similarly.

To obtain the network-wide unused AMS, the first ISP
gather iteration calculates the initial network-wide AMS
generated during the previous epoch, while each subsequent
iteration calculates how much AMS is still unused after the
previous ISP scatter iteration. The head module is respon-
sible for calculating via Equation 1 the network-wide AMS
generated during the previous epoch and for keeping track
of the 30" S FELy,; and 30" Y4 (AE Lyt — FELy, ;)
sums in Equation 1. To update these sums using the AEL,, ;
and F'E'L,, ; values of the current epoch, Zgn FEL,, ; and
ZB”(AELm’t —FEL,,.) are obtained via a simple parallel
reduction sum operations over the AEL,, ; and FEL,, ;
values, respectively, across all modules in the network. For
subsequent iterations, ISP gather accumulates the unused
AMS in the leaf modules also by a simple parallel reduction
sum across the network.

Finally, to ensure that an upstream link L’s power mode



will be equal or higher than the maximum power mode
among all L’s downstream links of the same type, each
downstream link also passes its currently selected power
mode to its upstream link of the same type during ISP
gather. If L’s selected power mode is lower than any of
its downstream links, L increases its power mode to match
the latter, updates CLS and passes upstream the difference
between the FLOs of the updated and the previous power
mode selection as unused AMS. Note that since the total
amount of data passed from a downstream module to its
upstream module during ISP gather is small, each module
only needs to send a single 64B packet during ISP gather.

3) Utilizing the Leftover AMS from ISP: After the end
of the last iteration of ISP gather, all leftover AMS in
the network is stored in the head module. Network-aware
management utilizes this unused AMS to prevent some
links from switching to full power mode due to AMS
violation during an epoch. When detecting a violation, a
link controller first requests for some of the unused AMS
recorded at the head module. When receiving the AMS
request message, the head module responds with a portion of
the unused AMS (e.g., 1/16th of the original unused AMS),
if the unused AMS has not already been depleted by AMS
request messages prior in the epoch. We allow each link to
request up to a quarter of the original unused AMS (e.g.,
by allowing a maximum of 0.25/(1/16) = 4 AMS requests
per link per epoch). A link switches to full power mode if
the AMS request is denied.

B. Network-Aware Optimizations for ROO

Network-unaware management adapts [22] to reduce
wake up latency for response links (see Section V); while the
DRAM array of a module is still being accessed, the module
proactively wakes up its response link (if the link is off),
instead of first waiting for the DRAM access to complete, to
reduce the performance overhead of waking up the response
link. Since the DRAM access latency is typically longer
than link wakeup latency (e.g., 30ns vs. 14ns) , the wake up
latency overhead of the response link of the module being
accessed can be completely hidden.

Network-aware management seeks to not only hide the
response link wakeup latency of the module under access,
but also hide the wakeup latency of every response link along
the response path to the processor. It does so by again
ensuring that a downstream link always be in a higher or
equal power mode than its downstream link(s). Specifically,
under network-aware management, a response link starts
turning on either when the link’s module’s DRAM array
is being read or after one of its immediate downstream
response links starts turning on plus a wait interval; the
interval is the sum of router latency and the downstream
link’s current SERDES and transmission latencies, which are
constant values during an epoch. A response link only turns
off when the link’s DRAM is not being read and when all

immediate downstream response links are off, which implies
that the latter links also will not be soon receiving packets
from their respective downstream response links or their
modules’ DRAMs. Note that an upstream response link’s
transmitter and its immediate downstream response links’
receivers all reside on the same module; as such, the on/off
state of immediate downstream links are readily available.
Since network-aware management completely hides
wakeup latency overheads for response links, it only con-
siders the request links to be SRCs during ISP for networks
with only ROO links. For the similar reason, for VWL/DVFES
+ ROO links, the head module assigns during ISP scatter
more (i.e., 3/4th of) unused AMS to the request links.

C. Network-aware Optimizations for VWL/DVFS

When upstream response links are congested, network-
aware management ignores some of the latency overhead ex-
perienced by downstream links when calculating of network-
wide AMS at the end of an epoch. To do so, each response
link controller tracks for the current epoch the cumulative
queuing delay (QD) and the fraction of packets that are
queued, or simply queuing fraction (QF). A packet is con-
servatively considered as being queued if it arrives behind at
least three older packets according to the link’s full power
mode delay monitor. The reduction sum operation of first
ISP gather iteration, which calculates how much network-
wide AMS is available for the next epoch, makes use of
these statistics; during this operation, each response link
controller reduces the total downstream overhead (from both
downstream request and response links) by the minimum of
downstream overhead * QF and QD.

D. Evaluation

Figure 15 shows the network-wide power reduction of
network-aware management vs. network-unaware manage-
ment. Overall power reduction over network-unaware power
management is, on average, 11% and 19% for small and
big networks, respectively. The corresponding I/O power
reduction for small and big networks are 17% and 29%,
respectively. Figure 16 presents the benchmark-level power
reduction of network-aware and unaware management Vvs.
full power networks, on average across all topologies; for
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Figure 15. Power savings of network-aware vs. unaware management.
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Figure 17. Left: Average performance overhead vs. network-unaware man-
agement. Right: Maximum performance overhead vs. full power networks.

readability, it only reports big networks and o = 5%. Fig-
ure 16 shows that network-aware management consistently
yields higher power reduction for every workload.

The left half of Figure 17 shows the average perfor-
mance overhead of network-aware management vs. unaware
management. For a = 2.5% and o = 5%, network-aware
management incurs a 0.2% and 0.3% average performance
penalty, respectively, compared to the latter. Closer inspec-
tion reveals that some high utilization links under network-
unaware management do not make use of any of their
AMS because the latency overheads of putting these links
to low power mode are exceedingly high. Under network-
aware power management, the AMS generated by these links
is redistributed to other links that can utilize the AMS,
resulting in a corresponding performance degradation. The
right half of Figure 17 shows the maximum performance
overhead of network-aware management vs. full power. The
maximum overhead over all 672 comparisons is 5.9%.

We perform sensitivity analysis by evaluating DVFS links
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Figure 18. Left: Average and maximum power reduction for DVFS and
20ns ROO links. Right: Average and maximum performance overheads.
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instead of VWL links and evaluating ROO with a wakeup
latency of 20ns instead of 14ns. Figure 18 shows the
network-wide power reduction and performance overheads
of network-aware and network-unaware management rela-
tive to full power networks for &« = 5%. Under DVFS,
both schemes yield less power reduction for the same value
of a% (e.g., < 5%) than VWL; this is due to the high
SERDES latency overheads at low voltage. As expected, the
power savings under both schemes for the longer 20ns ROO
links are slightly reduced. Meanwhile, network-aware power
management provides 21% and 12% power reduction over
vs. network-unaware power management for big and small
networks, respectively, on average across DVFS, 20ns ROO,
and DVFS+20ns ROO links.

VII. DISCUSSION

A. Other I/O Power Reduction Strategies

An alternative approach for selecting link bandwidth (but
not ROO modes) is to statically reduce link bandwidth like
the well-known fat-trees and tapered-trees. We note that
if traffic is evenly distributed across the network (e.g., by
interleaving adjacent pages across all modules), a hybrid
fat-tree and tapered-tree static bandwidth selection® does
not induce any queuing latency overheads. However, low
bandwidth links still takes longer to transmit a packet; since
static selection cannot control the aggregate packet trans-
mission latency overheads, it only provides a static power
and performance tradeoff point and incurs unpredictable
worst-case performance overheads. For example, for the
VWL power/performance model and big networks, static se-
lection+interleaving incurs 13% average performance over-
heads, 43% worst-case overhead, and 30% average top
quarter worst-case overheads, over the four topologies and
14 workloads (i.e., 4 * 14 = 56 comparisons).

In comparison, our network-aware management not only
provides tunable design points, but also provides higher
benefit for the same performance. By sweeping « values, we
found that network-aware power management with o = 30%
matches the average performance overhead above, but re-
duces overall power by 15% compared to static selection;
this is because our network-aware power management allows
contiguous memory pages to be mapped within the same
HMC, which consolidates accesses to fewer active HMCs
and allows more HMCs to go into low power modes. In ad-
dition, network-aware management only incurs a 25% worst-
case and 20% average top quarter worst-case performance
overheads vs. full power networks.

SLet S(x) be the number of links with hop distance 2 and T be the
total number of links, a fat+tapered tree sets the bandwidth of link with
hop distance d as 1/5(d) = (1 — sum‘ffls(i)/T) of maximum bandwidth
(and raises it to the nearest available bandwidth option).



B. Related Work

Many prior works have studied power management for
on-chip networks. Nodes (i.e., cores) in on-chip networks
need to communicate with one another and, therefore, benefit
from a small average distance between the network nodes; as
such, on-chip networks use topologies with many redundant
links, such as the well-known 2D mesh, which provide very
different power management challenges and opportunities
from the minimally connected topologies we study.

VIII. CONCLUSION

In this paper, we perform the first exploration to under-
stand the power characteristics of memory networks. We
identify idle I/O power as the highest power contributor.
Subsequently, we study idle I/O power in more detail. We
evaluate well-known I/O power reduction techniques such
as DVFS, ROO, and VWL. We adapt existing works on
memory power management to memory networks and obtain
32% and 21% 1/0 power reduction for big and small memory
networks, respectively. Finally, we explore network-aware
management and reduce I/O power by another 29% and 17%
for big and small networks, respectively.
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