
Enabling Effective Module-oblivious Power Gating for
Embedded Processors

Hari Cherupalli†, Henry Duwe‡, Weidong Ye ‡, Rakesh Kumar‡, and John Sartori†
†University of Minnesota, ‡University of Illinois at Urbana-Champaign

Abstract—The increasingly-stringent power and energy requirements of emerging
embedded applications have led to a strong recent interest in aggressive power
gating techniques. Conventional techniques for aggressive power gating perform
module-based power gating in processors, where power domains correspond to
RTL modules. We observe that there can be significant power benefits from
module-oblivious power gating, where power domains can include an arbitrary set
of gates, possibly from multiple RTL modules. However, since it is not possible
to infer the activity of module-oblivious power domains from software alone,
conventional software-based power management techniques cannot be applied for
module-oblivious power gating in processors. Also, since module-oblivious domains
are not encapsulated with a well-defined port list and functionality like RTL
modules, hardware-based management of module-oblivious domains is prohibitively
expensive. In this paper, we present a technique for low-cost management of module-
oblivious power domains in embedded processors. The technique involves symbolic
simulation-based co-analysis of a processor’s hardware design and a software
binary to derive profitable and safe power gating decisions for a given set of
module-oblivious domains when the software binary is run on the processor. Our
technique is automated, does not require programmer intervention, and incurs low
management overhead. We demonstrate that module-oblivious power gating based
on our technique reduces leakage energy by 2× with respect to state-of-the-art
aggressive module-based power gating for a common embedded processor.

I. INTRODUCTION

A large number of existing and emerging computing applications
require ultra-low-power operation and extreme energy efficiency [1],
[2], [3], [4], [5], [6]. Notable among these are the internet of things,
sensor networks, wearables, and health monitors. The 2015 ITRS
report projects power and energy constraints of these systems to be
even tighter in the future [7]. Unsurprisingly, these applications rely
on low-power microcontrollers and microprocessors that have become
the most widely-used type of processor in production today [8], [9],
[10].

The ultra-low power and energy requirements of emerging ap-
plications, along with the increasing leakage energy dissipation
that has accompanied CMOS scaling [11], have fueled interest in
aggressive power gating techniques. Conventional aggressive power
gating techniques perform module-based power gating, i.e., power
gating of RTL modules during periods of inactivity [12], [13], [14].
An RTL module is encapsulated with a well-defined port list, making
it relatively easy to determine when a module is inactive based on
input signals in the port list.

While RTL modules form convenient boundaries for defining
power domains, module-based domains may not be the best option
for supporting aggressive power gating. Logic is grouped into a
module based on common functionality, not necessarily based on
correlated activity. In several cases, activity of logic in the same
module can have uncorrelated activity (e.g., different registers in the
register file may not be used by the same instruction or even the same
application), while logic in different modules can often be correlated
(e.g., when one module feeds data or control signals to another).

In this paper, we make a case for aggressive power gating based on
module-oblivious power domains. A module-oblivious power domain
is an arbitrary set of gates that have correlated activity. Module-
oblivious power domains may contain only a subset of gates in a
module, may contain gates from multiple modules, and may also
consist of logic from non-microarchitectural modules (e.g., uncore,
debug logic, peripherals, etc.). The goal of grouping logic into
module-oblivious power domains based on correlated activity rather

than module membership is to enable larger segments of logic to be
power gated for longer periods of time, thus saving more energy.

While module-oblivious power domains may provide more oppor-
tunities to reduce power, conventional hardware and software-based
power management techniques cannot manage these unconventional
domains. A hardware or software-based power gating management
technique must be able to guarantee that a domain is idle before it
is powered off and that an idle domain is powered on before it will
be used. Since the activity of an arbitrary collection of gates that
may constitute portions of multiple modules cannot be inferred based
on software alone, module-oblivious domains cannot be managed
in software using conventional techniques. Hardware-based power
management detects when a domain is idle, then powers off the
domain. Since a module-oblivious domain is not encapsulated with a
well-defined port list and does not have a well-defined function but
instead consists of an arbitrary collection of gates that can contribute
to many different functionalities, detecting when the domain is idle
requires monitoring of all input nets to the gates in the domain. The
high overhead of monitoring the activity of so many signals easily
outweighs the benefits of power gating. Any viable technique for
managing module-oblivious power domains must be able to infer
the gate-level activity induced by software, so that the prohibitive
overheads associated with hardware monitoring of an arbitrary set of
gates can be avoided.

In this paper, we propose a technique that generates safe, ag-
gressive power gating management decisions for module-oblivious
power domains. The gate-level activity profile of an application is
captured through a symbolic simulation of the application’s binary
that characterizes domain activity for all possible application inputs.
Safe power gating decisions are then generated such that each domain
is guaranteed to be powered on by the time it is used, and domains are
aggressively powered off whenever profitable. Power gating decisions
are then embedded into the application binary. This software-based
power management approach avoids the prohibitive overheads of
managing module-oblivious domains in hardware.

Our proposed technique is automated, requires no programmer
intervention, and incurs low management overhead. Also, while
the technique is general, it is best suited for embedded systems.
Embedded system designers routinely perform hardware/software co-
design [15], [16] or license hardware IP [17], [18], so they often
have access to both RTL and software binary – the inputs needed
by our power gating framework.1 Also, embedded processors and
applications tend to be simple, so our symbolic simulation-based
analysis scales well in such settings.

This paper makes the following contributions.
• We make a case for module-oblivious power gating. We show
that module-oblivious power gating can result in 2× higher leakage
energy savings compared to state-of-the-art module-based power
gating.

1Power gating binary annotation can be offered as a cloud compilation service by the
hardware system vendor in non-embedded settings, where the application developer does
not have access to the processor description [19], [20], [21].

• To enable module-oblivious power gating, we present a fully-
automated technique that performs co-analysis of an embedded sys-
tem’s processor netlist and application binary to make safe, aggressive
power gating decisions.2 To the best of our knowledge, this is the
first technique for module-oblivious power gating.
• We fully implement module-oblivious and module-based power
gating in openMSP430 using an industry-standard UPF methodology
that accounts for all power gating overheads. We demonstrate that
module-oblivious power gating can achieve 2× higher leakage energy
savings compared to module-based power gating. We show that
module-oblivious gating based on our techniques achieves leakage
energy savings that are within 8% of optimal.
• Finally, we show that our technique for managing module-oblivious
domains is effective even at managing conventional module-based
domains. It saves 12% more energy than an idealized implementation
of IdleCount – a hardware-based domain management technique for
module-based domains. Our benefits are within 6% of optimal for
module-based domains.

II. RELATED WORK

TABLE I: Power Domains in Recent Pro-
cessors

Processor #domains
TI MSP430 Wolverine “many” [22]
ARM Cortex-A9 14 [23]
ARM Cortex-A15 8 [24]
Atmel SAML21 5 [25]
Intel Atom E6 15+ [26], [27]

While a large
body of work exists
on processor- and
core-level power
gating [12], [13],
[28], [29], [30], [31],
emerging power- and
energy-constrained
applications have fueled recent work on aggressive module-based
power gating techniques [14], [30], [32], [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42]. These techniques, including
those that adaptively re-size microarchitecural structures [14],
[13], and techniques that target uncore components (e.g., on-chip
routers [43], [44], [45]), focus on power gating of RTL modules.
Since module-based domains are smaller and more homogeneous,
they may provide more frequent opportunities for aggressive power
gating than processor- or core-level solutions. Table I shows the
number of power domains supported in some recent microprocessors
/ microcontrollers. As can be seen, power gating is already being
performed aggressively; many processors have a large number of
power domains.

In this paper, we make a case that aggressive power gating may
save even more leakage energy when power domains are module-
oblivious rather than module-based. Primarily, this is because logic in
an RTL module is grouped together based on common functionality,
not necessarily a correlated activity profile, whereas logic in a
module-oblivious domain is grouped together based on common
periods of inactivity that allow power gating to be performed. To
best of our knowledge, this is the first work on module-oblivious
power gating.

In terms of power domain management, prior works have used
software- or hardware-based management. Software-based domain
management techniques [46], [14] infer when power domains will
be inactive by analyzing an application binary. This requires the
functionality of managed power domains to be software-visible. Prior
techniques for software-based power domain management cannot be
used for module-oblivious power domains, because such domains
may contain logic that belongs to many modules and contributes
to many fine-grained functionalities, making it impossible to infer
activity of module-oblivious domains from software alone.

2Our automated co-analysis tool for module-oblivious power gating is available for
download at the following link: http://people.ece.umn.edu/users/jsartori/tools.html

Hardware-based domain management techniques use hardware
monitors to detect when power domains are inactive [28], [13], [29],
[42], [36], [37]. Such an approach is feasible for prior works on
aggressive module-based power gating, because an RTL module is
encapsulated with a well-defined interface (port list) and function.
Thus, it is possible to infer domain activity from a relatively small
number of signals. Hardware monitoring is infeasible for module-
oblivious domains, however, because they do not have a well-defined
interface or functionality. As such, the number of signals that must
be monitored to infer domain activity is prohibitively large.

Symbolic simulation has been applied in circuits for logic and
timing verification, sequential test generation [47], [48], [49], [50],
[51], and determination of application-specific Vmin [52]. It has
also been applied for software verification [53]. However, to the
best of our knowledge, no existing technique has applied symbolic
simulation for power gating and power domain management.

III. MOTIVATION

A. A Case for Module-oblivious Power Domains for Microprocessors

There are several reasons why module-oblivious power domains
may provide significantly more opportunities for power gating than
module-based domains in microprocessors. One reason is that logic
in microarchitectural modules is grouped together largely based on
functionality or position in the processor pipeline, which does not
necessarily imply correlation in terms of activity. It may often be the
case that different logic partitions within the same microarchitectural
module have very different activity profiles. For example, many
microarchitectural modules support “one-hot” logic. This implies that
each logical state is mutually exclusive of all other states. Similarly,
each instruction selects and executes on one execution unit. This
leaves all other execution units idle. Furthermore, it is common
for several modules to have parts that are nearly always active and
other parts that are nearly always idle. This weak or anti-correlation
between the activity profiles of different parts within a module
limits the effectiveness of power gating for module-based domains.
Figure 1a shows activity profiles for the frontend and execution unit
modules of an openMSP430 processor [54] running an encryption
application (tea8), where each module has been divided into two
sub-modules. In the figure, a high/low value indicates that a sub-
module is active/idle. Since both the frontend and the execution unit
have at least one part active during nearly every instant of this time
period, there is no opportunity to power gate either module. Stated
differently, fndA and exuA prevent the frontend and execution unit
from being power gated, even though fndB and exuB are almost
completely inactive. If, however, fndA and exuA were combined
to form one power domain and fndB and exuB formed a second
domain, the second domain could be power gated during this time
period. Uncorrelated activity within modules and correlated activity
across modules indicates that there may be significant opportunities to
perform more aggressive power gating with module-oblivious power
domains.

Another reason for correlated activity across module boundaries
is that logic in one module often drives logic in another module.
Although the entire modules are unlikely to have correlated activity,
the driving and driven parts of the modules do have highly correlated
activity. Also, such logical components are typically in close proxim-
ity in a chip layout, making them good candidates to be placed in the
same domain for power gating. Figure 1b illustrates this behavior with
an example for an application that performs multiplication, where
the multiplier and memory backbone modules of the openMSP430
processor have each been divided into two sub-modules. Sub-module
mbbA contains the peripheral data input bus that feeds input data to
the multiplier (since the multiplier is one of the peripherals). The

2

(a) Uncorrelated activity within a module can prevent power gating
of module-based domains, whereas module-oblivious domains allow
more aggressive power gating.

(b) When one module drives another, the driving and driven logic belong to
different modules but have highly correlated activity, whereas logic within
the same module may have completely uncorrelated activity.

Fig. 1: Activity profiles for different module partitions suggests that
module-oblivious domains may provide significantly more opportu-
nities for power gating than module-based domains.

activity of this sub-module is highly correlated to that of mulB ,
which contains the input side of the multiplier. When domain wakeup
overhead is considered, module-based power domains do not allow
any power gating of these modules (blue activity profiles). However,
when module-oblivious domains are formed (red activity profiles),
both module-oblivious domains can be power gated for significant
portions of this time period.

Figure 2 is a correlation matrix that shows the correlation between
each pair of sub-modules in the openMSP430 processor, where each
module has been partitioned into four sub-modules and correlation
equals the fraction of cycles in which two sub-modules exhibit the
same activity (active or idle). The dashed boxes along the main
diagonal encircle correlation scores for sub-modules that belong to
the same module. It can be observed that not all parts of a module
have correlated activity, and in many cases, different parts of the
same module have highly uncorrelated activity. Tracing down a row
corresponding to a given sub-module, it can be observed that there
always exist one or more sub-modules from different modules that
have more correlated activity profiles than a sub-module from the
same module. For example, in the row showing correlations for the
last sub-module in the frontend, we have encircled all the (10) sub-
modules from different modules that are more strongly correlated to
this frontend sub-module than any of the other frontend sub-modules.
These observations suggest that module-based power domains may
often miss opportunities to power gate idle logic, whereas module-
oblivious power domains may provide significantly more opportuni-
ties to power gate larger areas of logic for longer periods of time.
In Section VI, we show that a full-fledged UPF implementation of
openMSP430 with module-oblivious domains achieves up to 2×
more leakage savings than an implementation with module-based
domains.

B. A Case for a Novel Management Technique for Module-oblivious
Domains

Reaping the power benefits enabled by module-oblivious domains
requires a power domain management technique that can determine

Fig. 2: Different parts of the same module can have uncorrelated
activity profiles. For nearly all sub-modules, a sub-module from a
different module has more correlated activity than a sub-module from
the same module.

1.mov #0, r4;
2.mov #0, r5;
3.mov &0x0020, r15;
4.cmp r15, #10000;
5.jl else
then:
6.mov #1000, r4
7.jmp end
else:
8.mov #1000, r5
end:
9.sub r4, r5, r6;

OFF ?

OFF ?

OFF ?

ON ?

OFF ?

OFF ?

OFF ?

OFF ?

ON ?

D0			D3

Fig. 3: It is possible to infer the activity of a module-based domain
(e.g., D0 – the adder in the execution unit) based on software alone.
It is not possible to infer the activity of a module oblivious domain
(e.g., D3 from Figure 4c) based on software alone.

when domains are idle / active and power them off / on accord-
ingly. Unfortunately, existing techniques that manage module-based
domains through software or hardware cannot be used for module-
oblivious domains. Consider existing software-based management
techniques. Software-based management is possible when domain
activity can be inferred from software, as is the case for many
module-based domains [12]. In the example code listing in Figure 3,
domain D0 is a module-based domain corresponding to the adder
in the execution unit. Since the adder module has a well-defined
architectural function, it is possible to infer when the domain must
be powered on. For example, instructions 4 (compare) and 9 (subtrac-
tion) use the adder, so domain D0 must be powered on when those
instructions reach the execution stage. The adder can potentially be
powered off for other instructions, since they do not use the adder.

For a module-oblivious domain, however, it is not possible to infer
domain activity from software alone. A module-oblivious domain
does not have a well-defined architectural function. It is a collection
of gates with correlated activity profiles that may belong to many
modules and contribute to many functionalities. For example, domain
D3 in Figure 3 corresponds to the module-oblivious domain in
Figure 4c (see Section V-A for details of how module-oblivious
domains are constructed). The domain contains gates from ten
different modules, including glue logic, the memory backbone, and
clock generation logic for which activity cannot be inferred based on
software.

Similarly, existing hardware-based domain management techniques

3

(a) Domain 1 (b) Domain 2 (c) Domain 3 (d) Domain 4
frontend clock_module register_file
alu execution_unit sfr
dbg multiplier watchdog
mem_backbone glue

Fig. 4: Breakdown of domain composition for each module-oblivious
power domain. All four domains have gates from at least eight
microarchitectural modules.
module domain_activity_detector_D0 (
inst_type, // from decode
wkup_adder);
input [11:0] inst_type;
output wkup_adder;
wire wkup_adder = {inst_type[‘ADD] |
inst_type[‘SUB] | inst_type[‘ADDC] |
inst_type[‘SUBC] | inst_type[‘CMP] |
inst_type[‘REL_JMP] | inst_type[‘RETI]};
endmodule

(a) Verilog statements for inferring the activity of the execution unit adder
module – synthesizes to 6 gates.

module domain_activity_detector_D3 (
in, // domain inputs
ff_d, // domain ff D-pins
ff_q, // domain ff Q-pins
clk, wake_up_domain);
input [704:0] in; input [648:0] ff_d;
input [648:0] ff_q; input clk;
output wake_up_domain; reg [704:0] in_delay;

always @ (posedge clk)
begin

in_delay <= in;
end

wire [704:0] in_toggled = in ˆ in_delay;
wire [648:0] ff_toggled = ff_d ˆ ff_q;
wire any_input_toggled = {|in_toggled};
wire any_ff_toggled = {|ff_toggled};
wire wake_up_domain = {any_input_toggled | any_ff_toggled};
endmodule

(b) Verilog statements for inferring the activity of the module-oblivious
domain from Figure 4c – synthesizes to 4010 gates.

Fig. 5: Hardware-based domain management logic for a module-
based domain can be relatively simple, whereas domain management
logic for a module-oblivious domain is prohibitively expensive.

are infeasible for module-oblivious domains. Hardware-based domain
management dynamically determines when a power domain is idle
/ active based on processor control signals. This can be relatively
straightforward for module-based designs, since RTL modules are
encapsulated, with a well-defined interface (port list) and functional
description. For example, consider D0 in Figure 3 – the adder
module. To determine if this domain will be active, hardware-
based management logic only needs to detect if a decoded opcode
corresponds to one of the instructions that uses the adder. Figure 5a
shows the verilog statements that can be added to the decode stage
to infer the activity of the adder. Synthesized, this logic corresponds
to only 6 gates.

On the other hand, domain management logic for a module-
oblivious domain is not simple. Since module-oblivious domains are
not nicely encapsulated with a well-defined interface and function,
the only way to infer their activity in hardware is to monitor activity
on all input nets that cross the domain boundary. Additionally, state
elements (flip-flops) inside the domain must be monitored for activity,
since a state machine inside the domain could be active even without
triggering any activity at the domain boundary. Figure 5b shows

TABLE II: Overheads for hardware-based management of module-
oblivious power domains in openMSP430.

Domains Gate FF Domain Area Static Power
Count Count Inputs Overhead Overhead

2
6695 784

947 143.36% 136.44%
3 1203 159.38% 151.30%
4 1450 183.52% 173.69%

the verilog statements that infer the activity of the module-oblivious
domain D3 from Figure 4c. Synthesized, this logic corresponds to
4010 gates.

The overhead of managing module-oblivious domains in hardware
becomes prohibitive when the full processor is considered. Table II
shows the area overhead incurred by hardware-based domain manage-
ment logic in openMSP430 for two-, three-, and four-domain designs.
The overheads preclude any possible benefits from aggressive power
gating, prohibiting the use of hardware-based domain management
for module-oblivious power gating.

Any viable technique for managing module-oblivious power do-
mains must be based on inferring their gate-level activity from soft-
ware, such that the prohibitive overheads associated with hardware-
based monitoring of an arbitrary set of gates can be avoided. In
the next section, we describe a low-overhead technique based on
hardware-software co-analysis that can infer the activity of module-
oblivious domains to enable aggressive module-oblivious power
gating.

IV. A CO-ANALYSIS BASED APPROACH FOR

MODULE-OBLIVIOUS POWER GATING

A power domain management technique must infer domain activity
to determine when domains can be powered off, while guaranteeing
that that they will be powered on when active. Since a module-
oblivious domain may contain an arbitrary set of gates, inferring
domain activity requires gate-level analysis of software execution
on a processor. Activity analysis cannot be based on profiling (i.e.,
observing activity for several benchmark runs with different input
sets), since profiling is input-specific and may result in incorrect
management decisions when in-field inputs are different than the
inputs characterized during profiling. An incorrect management deci-
sion is unacceptable, since it may lead to incorrect program execution
(e.g., when a domain needed by the program is turned off). Below,
we describe a novel technique that uses symbolic simulation to
characterize the gate-level activity of an application on a processor
to generate power gating decisions for module-oblivious power
domains. The symbolic simulation uses unknown logic values (Xs)
for all inputs so that the generated activity profile characterizes all
possible executions of the application for all possible inputs. We
use the results of input-independent activity analysis to generate
instruction-level power domain management decisions that achieve
near-optimal power benefits while guaranteeing that all domains are
powered on whenever needed. Figure 6 provides an overview of our
module-oblivious power gating technique.
A. Gate Activity Analysis

The first stage of our module-oblivious domain management tech-
nique infers the activity of power domains during an application’s
execution. Normally, a gate-level simulation could infer the activity
of all processor gates for only one input set. However, our technique
propagates Xs for all application inputs, allowing us to infer the
activity of all gates for all possible input sets. Combined with the
domain mapping that specifies which gates belong to each domain,
we can infer domain activity for all possible executions of an
application on a processor.

Gate Activity Analysis (Algorithm 1) performs symbolic simula-
tion [47] of an application binary running on the gate-level netlist of
the processor, in which unknown logic values (Xs) are propagated for

4

Gate%Ac(vity%
Analysis%

Design% Binary%

Netlist%(.v)%%

Inputs%as%X’s%

Symbolic%
Execu(on%

Tree%

Ga(ng%Binary%
Annota(on%

PG%Domain%
informa(on%

Annotated%
Binary%

1.mov #0, r4;

2.mov #0, r5;

3.mov &0x0020, r15;

4.cmp r15, #10000;

5.jl else

then:

6.mov #1000, r4

7.jmp end

else:

8.mov #1000, r5

end:

9.sub r4, r5, r6; end:

9.sub r4, r5, r6;

then:

6.mov #1000, r4

7.jmp end

1.mov #0, r4;

2.mov #0, r5;

3.mov &0x0020, r15;

4.cmp r15, #10000;

5.jl else

else:

8.mov #1000, r5

end:

9.sub r4, r5, r6;

ON OFF

ON OFF

ON OFF

ON OFF

ON OFF

ON OFF

ON OFF
ON OFF

ON OFF ON ON

ON OFF

ON OFF

ON OFF

ON OFF

ON OFF

ON OFF

ON OFF

ON OFF

ON ON

Static Instruction Stream
(Binary)

Dynamic Instruction Stream
(Execution Tree)

D1 D2

D1 D2

D1 D2

D1 D2

D1 D2 D1 D2

Fig. 6: Our analysis generates
input-independent power gating
decisions for module-oblivious
power domains.

Fig. 7: Illustration of Gating Binary Annotation for an example code (an if-else block). For simplicity,
we show each instruction as taking a single cycle, only show domain-level activity, and use a wake-up
latency of zero cycles.

all signal values that cannot be constrained based on the application.
When the simulation begins, the states of all gates and memory
locations that are not explicitly loaded with the binary are initialized
to Xs. During simulation, all input values are replaced with Xs.
As simulation progresses, the simulator dynamically constructs an
execution tree describing all possible execution paths through the
application. If an X symbol propagates to the inputs of the program
counter (PC) during simulation, indicating an input-dependent control
sequence, a branch is created in the execution tree. Normally, the
simulator pushes the state corresponding to one execution path onto a
stack for later analysis and continues down the other path. However,
a path is not pushed to the stack or re-simulated if it has already
been simulated (i.e., if the simulator has seen the branch (PC) before
and the processor state is the same as it was when the branch
was previously encountered). This allows Algorithm 1 to analyze
programs with input-dependent loops. When simulation down one
path reaches the end of the application, an un-simulated state is
loaded from the last input-dependent branch in depth-first order, and
simulation continues. When all execution paths have been simulated
to the end of the application (i.e., depth-first traversal of the control
flow graph terminates), Gate Activity Analysis is complete.3

During symbolic simulation, the simulator captures the activity of
each gate at each point in the execution tree. A gate is considered
active in a particular cycle if its value changes or if it has an unknown
value (X) and is driven by an active gate; otherwise, the gate is idle.
The resulting annotated symbolic execution tree describes all possible
instances in which a gate could possibly toggle (and by extension,
all instances in which each domain could possibly be active) for
all possible executions of the application. As such, it also describes
when power domains (even module-oblivious domains) can be safely
powered down and when they must be powered up. The next section
describes how inferred domain activity information is translated into
domain management decisions.

3For our benchmarks (Table III), analysis takes 37 minutes, on average, and a
maximum of 2 hours for our largest benchmark. While naive symbolic gate-level
simulation does not scale well to large, complex applications or processors, an increasing
number of future applications for the internet of things, wearables, embedded sensors,
and other ultra-low-power domains are expected to continue to use simple applications
and processors [7], [10]. Also, several heuristics have been shown to be effective in
enabling symbolic analysis for complex applications and processors [55], [56].

Algorithm 1 Gate Activity Analysis
1. Procedure Generate Symbolic Execution Tree(app binary, design netlist)
2. Initialize all memory cells and all gates in design netlist to X
3. Load app binary into program memory
4. Propagate reset signal
5. s← State at start of app binary
6. Symbolic Execution Tree T .set root(s)
7. Stack of un-processed execution paths, U .push(s)
8. while U != ∅ do
9. e← U .pop()

10. while e.PC next != X and !e.END do
11. e.set inputs X() // set all peripheral port inputs to Xs
12. e′ ← propagate gate values(e) // perform simulation for this cycle
13. e.annotate gate activity(e,e′) // annotate tree point with activity
14. e.add next state(e′) // add to execution tree
15. e← e′ // process next cycle
16. end while
17. if e.PC next == X then
18. foreach a ∈ possible PC next vals(e) do
19. if a /∈ T then
20. e′ ← e.update PC next(a)
21. U .push(e′)
22. T .insert(a)
23. end if
24. end for
25. end if
26. end while

B. Gating Binary Annotation

Gating Binary Annotation (GBA) takes as input the annotated
symbolic execution tree from Gate Activity Analysis, gate-to-domain
mapping information, and domain wake-up overheads, and produces a
binary in which each static instruction is annotated with power gating
decisions for all domains in the processor. Algorithm 2 describes
GBA. GBA considers each path through the symbolic execution tree.4

During each cycle of a path’s execution, GBA determines which
domains can have active gates and thus must be powered on. To
ensure safety, GBA also marks a domain as active during the N
cycles leading up to a period of activity, where N is the wakeup
latency required to power up the domain. These cycle-level power
gating decisions are mapped to all the static instructions that have
dynamic instances in the pipeline during the wakeup cycles or the
current cycle.

4For our benchmarks, GBA takes 11.71 seconds, on average, and a maximum of 35.44
seconds for our largest benchmark.

5

Algorithm 2 Gating Binary Annotation for Power Gating Control

Procedure Annotate Binary with PG Decisions(annotated symbolic execution tree,
domain mapping, domain wakeup overhead)

1. PSET ← enumerate all paths in annotated symbolic execution tree
2. Mark all domains as idle for all instructions/addresses in the binary
3. foreach path p ∈ PSET do
4. foreach cycle c ∈ p do
5. foreach gate g ∈ Processor do
6. if g is toggled then
7. D ← domain mapping.get domain(g)
8. wo← domain wakeup overhead.get(D)
9. I ← get instructions being executed(p, c, wo)

10. foreach i ∈ I do
11. Mark domain D as active at instruction i in binary
12. end for
13. end if
14. end for
15. end for
16. end for

Once GBA has considered each execution path through an exe-
cution binary, each static instruction has an annotation specifying
which domains must be powered on when the instruction is in
the decode stage. This annotation guarantees safety, because each
possible dynamic instance of a static instruction is considered by
GBA. If a domain is marked as being powered on for any dynamic
instance of a static instruction, the static instruction is annotated
with an “ON” decision for the domain. This is conservative to
ensure safety, but it works well for embedded applications, which
tend to have simple control flow. If a domain is not active for
any dynamic instance of a particular instruction (even considering
wakeup overheads), the domain is powered off. The annotated binary
containing domain management decisions can be used to manage
power domains using one of the several techniques described in
Section IV-D.

C. Illustrative Example

This section illustrates the procedures for managing module-
oblivious domains, described in Sections IV-A and IV-B, with an
example. Figure 7 revisits the example code from Figure 3 to demon-
strate that our technique based on hardware-software co-analysis can
infer the activity of module-oblivious domains, which was impossible
to infer from software alone.

Figure 7 shows the annotated symbolic execution tree generated
by Gate Activity Analysis (GAA). GAA simulates the application
starting at instruction 1. When an input value is read in instruction 3,
instead of storing the input bits, unknown logic values (Xs) are stored
in r15. During instruction 5, an X propagates to the PC inputs, since
the result of the comparison in instruction 4 is unknown (X). At this
point, a branch is created, and the simulation state is stored in a stack
for later analysis with the address of instruction 8 (else:) in the
PC inputs. Simulation continues through the left (then:) control
flow path to completion, starting with instruction 6. After finishing
instruction 9, the stored simulation state is popped off the stack and
the right control flow path is simulated to completion, starting with
instruction 8.

During simulation, GAA annotates each dynamic instruction with
domain activity for each domain (D1 and D2 in Figure 7). ON
means that at least one gate in the domain might be active during
that instruction; OFF means that all of the domain’s gates are
guaranteed to be inactive for that instruction. Next, Gating Binary
Annotation (GBA) maps the domain states (ON/OFF states) from the
symbolic execution tree to the static instructions in the application
binary. Consider static instruction 1 (mov #0, r4). There is only
one dynamic instance of the instruction in the symbolic execution
tree, and for this instance, domain D1 is ON and D2 is OFF.

Therefore, GBA annotates the corresponding static instruction with
the information that D1 is ON and D2 is OFF.

Now consider static instruction 9 (sub, r4, r5, r6). There
are two dynamic instances of the instruction in the symbolic execution
tree. The activity of D1 is consistent across the two instances (D1
is ON for both); therefore, GBA annotates the static instruction with
the information that D1 is ON. The activity of D2, however, is not
consistent across the two dynamic instances of instruction 9; D2 is
OFF in one and ON in the other. In this case, GBA conservatively
resolves the conflict by marking D2 as ON in the static instruction
annotation. This ensures safety for all possible application executions.

D. Microarchitecture Support for Software-based Power Gating

Sections IV-A and IV-B describe a technique that can infer
the activity of module-oblivious domains without costly hardware-
based monitoring and use inferred domain activity to make safe
and profitable domain management decisions. This section describes
microarchitectural support for communicating domain management
decisions to the control logic that powers the domains off and on.
Power Gating Instructions:
A straightforward way to generate power gating control signals is to
insert instructions in the binary that direct power domains when to
turn off and on. To ensure that a power domain is powered on before
it is used, the wakeup instruction for a domain must arrive wakeup-
latency cycles before an instruction, IA, that will activate the domain.
For an in-order processor, we insert the wakeup instruction wakeup-
latency instructions ahead of IA. This guarantees that the domain will
be powered up even if instructions have variable latencies. A power
down instruction for a domain is inserted immediately after the last
instruction that specifies that the domain must be powered on. Since
GBA marks domains as active (ON) during their entire wakeup and
activity period, the wakeup instruction is simply inserted before the
first instruction that marks a domain as ON, and the power down
instruction is inserted after the last instruction that marks a domain
as ON. For example, in Figure 7 an instruction that turns D1 ON and
D2 OFF is inserted before instruction 1, while an instruction to turn
D2 ON is inserted before instruction 9. Note that a similar support
mechanism has been used in prior work on software-based power
gating of functional units for embedded processors [46].
Reserved Instruction Bits:
Another option for indicating when domains should be powered on
and off is to modify the ISA of the processor to reserve some bits
in the instruction to indicate the ON/OFF state of each domain. The
number of bits required is equal to the number of domains. The main
benefit of this technique is that it does not require extra instructions
to be inserted in the binary. However, since the number of bits that
can be reserved in the instruction for power gating would likely be
small, this technique can only support a small number of power
domains. Also, reserving instruction bits for power-gating decisions
may increase code size if the instruction length must be increased to
accommodate the bits.
PC Monitoring:
Another alternative is to maintain a software-populated table that
holds the addresses of annotated instructions, along with correspond-
ing information about which domains should be turned ON or OFF
when that instruction’s address enters the PC. Every N instructions,
the application populates the table with the addresses of annotated
instructions in the next window of N instructions. When the PC
matches one of the addresses in the table, the power domain control
signals stored in that table entry are sent to the respective power
domains to switch them on or off. This technique requires some
software overhead to re-populate the table and hardware overhead to
implement the table as a CAM.

6

E. Ensuring Correctness

The proposed approach guarantees correct execution of the appli-
cation at three levels.
1. Guaranteeing that domains turn on when needed: Our co-
analysis approach characterizes domain activity for all possible
executions of an application for all possible inputs to the application.
A power domain is only turned off if it is not used by an instruction
in all execution paths through the code. (Section IV-B).
2. Guaranteeing that analysis is input-independent: We perform
a symbolic simulation in which all application inputs are replaced by
Xs. This ensures full characterization of application-induced activity
on the processor for all possible application inputs (Section IV-A).
3. Guaranteeing that hardware implementation is correct: We
use an automated industry-standard UPF flow to fully implement
power gating designs and accurately account for all implementation
overheads of power gating (Section V-C).

F. Generality

While we primarily target low-power processors used by numerous
embedded applications [1], [2], [3], [4], [5], module-oblivious power
gating can be applied in other contexts as well. We discuss generality
below.
Complex Processors: More complex processors contain more
performance-enhancing features such as large caches, prediction or
speculation mechanisms, and out-of-order execution, that introduce
non-determinism into the instruction stream. Co-analysis is capable of
handling this added non-determinism at the expense of analysis tool
runtime. For example, by injecting an X as the result of a tag check,
both the cache hit and miss paths will be explored in the memory
hierarchy. Similarly, since co-analysis already explores taken and not-
taken paths for input-dependent branches, it can easily be adapted to
handle branch prediction.

Although out-of-order execution appears to execute instructions
in a non-deterministic order, the ordering of instructions is actually
deterministic, based on the dependence pattern between instructions.
While instructions may execute in different orders depending on
the state of pipelines and schedulers, a processor that starts from a
known reset state and executes the same piece of code will transition
through the same sequence of states each time. Thus, modifying
input-independent CFG exploration to perform input-independent
exploration of the data flow graph (DFG) may allow analysis to be
extended to out-of-order execution.
Multi-threading and Multi-programming: Multi-programming and
multi-threading present challenges for application analysis, since they
introduce non-determinism in the instruction stream executed by a
processor. Since it may not be possible to determine all possible
interleavings of instructions between threads, a minor adaptation
to Algorithm 1 is needed to perform co-analysis for a thread that
is agnostic to the behavior of other threads. Any state that is not
maintained as part of a thread’s context can be assumed to have a
value of X when symbolic execution is performed for an instruction
belonging to the thread. This approach generates safe power gating
decisions for the thread irrespective of the behavior of the other
threads.
Binary Compatibility: Software-based power gating techniques (not
just ours) may have issues with binary compatibility due to inserted
power gating instructions. We can address this by maintaining and
distributing the un-instrumented binary and running a one-time co-
analysis to tailor the binary for a specific processor.
System Code: Our evaluations have been performed in the context of
bare-metal design (no OS). While many low-power microprocessors
and a large segment of embedded systems are bare-metal systems (ap-
plication running on the processor without an operating system (OS))

(a) Domain 1 (b) Domain 2 (c) Domain 3 (d) Domain 4
frontend clock_module register_file
alu execution_unit sfr
dbg multiplier watchdog
mem_backbone glue

Fig. 8: Domain composition of module-based power domains. Each
module belongs to only one domain.

[57], [58], [59], [60], use of an OS is common in several embedded
application domains, as well as in more complex systems. In such
systems, system code must be analyzed in addition to application
code to identify power gating opportunities. For relatively simply
OSes (e.g., embedded and realtime OSes), it may be possible to
completely analyze and annotate the OS using GAA+GBA. In some
settings, it may not be possible to analyze system code completely. A
simple solution to guarantee safety of power gating decisions in such
settings is to save the domain state as part of the application context,
turn on all domains before entering system mode, and return to the
saved state when returning to user mode. The performance impact
of wakeup overhead during a context switch should be small in such
settings since OS invocations are relatively infrequent and wakeup
latency is negligible compared to the time between context switches.

V. METHODOLOGY

In this section, we first describe how we construct module-based
domains and module-oblivious domains for our study. We then
describe the different techniques we evaluate for managing power
domains. Finally, we discuss other methodological details of our
evaluations.

A. Constructing Power Domains

Module-based Domains: We construct module-based domains
following the conventional approach for aggressive power gating, in
which power domains are formed to encompass microarchitectural
modules. When the number of modules is greater than the number of
allowable power domains, modules are grouped together into domains
using hierarchical agglomerative clustering [61]. This clustering
technique combines a set of N clusters into N-1 clusters, based on
an optimization objective. In this case, the objective function uses
activity profiles for the clusters (obtained from benchmark profiling)
to determine which combination of modules maximizes the potential
energy savings achieved by power gating the resulting domains.
Potential energy savings are measured in gated cycles, where one
gated cycle corresponds to power gating one gate in the gate-level
netlist for one cycle. Figure 8 shows the domain composition for
four module-based domains that maximize leakage energy savings
for module-based power gating.

Module-oblivious Domains: We use the same clustering tech-
nique as for module-based domains, with two key differences. First,
whereas module-based domain construction begins with all processor
modules in separate clusters and combines clusters using hierarchical
agglomerative clustering to form the desired number of domains,
module-oblivious domain construction begins with every gate in a
separate cluster and combines clusters to form the desired number of
domains. Since a gate may end up in a cluster containing gates from
other modules, the resulting domains are module-oblivious.

Second, since an application’s in-field inputs may not always match
the inputs used during profiling, we use activity profiles produced by

7

input-independent gate activity analysis (Section IV-A) to identify
correlated gates and generate power domains, instead of profiles
captured assuming specific inputs. We treat an X in an activity profile
as a toggle, since it indicates that a net could toggle for some possible
input. Input-independent domain formation ensures robustness of
domains across variations in an application’s input set. We form
domains using the activity profiles for only three randomly-selected
applications in our benchmark set (tea8, binSearch, Autocorr), and
use these domains to perform evaluations for all thirteen benchmarks
in Table III. In practice, we envision that domains will be formed
using activity profiles that are representative of a system’s target
workloads (similar to how benchmarks are used to determine mi-
croarchitectural parameters). The actual workloads that the processor
will run in the field may be different and many more than the number
of benchmarks used for domain formation. As such, we chose a
small number of benchmarks for domain formation relative to the
total number of applications used for evaluation. Nevertheless, our
evaluations show significant benefits even for the ten benchmarks that
were not used for domain formation (Section VI). This is because
the correlated activity among gates in different modules is often ISA
and microarchitectural implementation-dependent, so only a small
number of benchmarks are needed to determine which gates have
correlated activity profiles and form domains accordingly.

B. Power Domain Management

IdleCount [62] is a hardware-based power gating management
technique that uses a counter per domain to count the number of
cycles a domain has been idle. The counter is reset every cycle
its domain is active. When the counter reaches a threshold, k, the
domain is powered down. We perform evaluations for k = 5, 10, and
100. Although [62] only proposes power gating of functional units,
we optimistically evaluate it for any arbitrary processor modules,
even software-invisible modules. We only evaluate IdleCount for
module-based domains, since activity monitoring is prohibitively
expensive for module-oblivious domains (Section III-B). To make this
baseline even more optimistic, we do not consider the overhead of
implementing hardware-based domain monitoring logic for software-
invisible module-based domains.

Oracular Management assumes perfect knowledge of an applica-
tion’s inputs to determine exactly when every power domain should
be powered on or off to maximize energy savings. Each domain
is woken up just in time so that the domain is fully powered on
by the first cycle that any of its gates become active (i.e., toggle).
Oracular management powers down a domain immediately whenever
profitable, i.e., when all gates in the domain will be idle for at least
the number of cycles it takes the domain to wake up. The benefits of
oracular management represent the upper bound on the benefits that
can be achieved by any power gating technique.

Our approach: Software-Hardware Co-analysis uses input-
independent symbolic simulation to annotate instructions in the
application binary with power gating decisions for each domain, as
described in Section IV.

C. Simulation Infrastructure and Benchmarks

We verify our approach on a silicon-proven general purpose
processor – openMSP430 [54]. 5 Since MSP430 supports aggres-
sive module-based power gating [22], it is a suitable testbed for
comparison of module-based and module-oblivious power gating.
The processor is synthesized, placed and routed in TSMC 65GP
(65nm) technology at an operating point of 1V and 100 MHz using
Synopsys Design Compiler [64] and Cadence EDI System [65].
Gate-level simulations are performed by running full benchmark

5MSP430 is one of the most popular processors used in low-power systems [22], [63].

TABLE III: Benchmarks

Embedded Sensor Benchmarks [66]
mult, binSearch, tea8, intFilt,
div, inSort, rle, tHold, intAVG

EEMBC Embedded Benchmarks [70]
Autocorr, ConvEnc, FFT, Viterbi

TABLE IV: Overheads of implementing power gating (Isolation +
Retention)

Domain Type Module-oblivious Module-based
Domain Count 2 3 4 2 3 4

Static Power (%) 1.9 2.5 2.9 0.3 0.7 1.6
Dynamic Power (%) 1.5 3.9 6.0 0.9 1.5 1.6

Area (%) 14.9 18.1 22.2 8.3 8.7 9.7
Wiring (%) 5.1 6.5 11.8 3.4 5.2 3.9
Delay (%) 0.0 0.0 0.0 0.0 0.0 0.0

applications on the placed and routed processor using a custom
gate-level simulator to efficiently traverse the control flow graph
of an application and capture input-independent activity profiles
(Section IV-A). We show results for all benchmarks from [66] and all
EEMBC benchmarks that fit in the program memory of the processor.
These benchmarks are chosen to be representative of emerging ultra-
low-power application domains such as wearables, internet of things,
and sensor networks [66]. Power domains are specified using the
Unified Power Format (UPF) [67], and isolation gates and retention
cells are inserted using Synopsys Power Compiler [68] to create
a processor implementations that fully support and account for
all overheads of power gating. Power analysis is performed using
Synopsys Primetime-PX [69]. Experiments were performed on a
server housing two Intel Xeon E-2640 processors (8-cores each,
2GHz operating frequency, 64GB RAM).

D. Power Gating Implementation Overheads

Table IV quantifies the overheads of implementing power gating
with module-oblivious and module-based domains. Implementation
overheads result from insertion of isolation and retention cells.
Module-oblivious domains use more isolation cells than module-
based domains and thus have higher overhead in terms of power
(static and dynamic) and area. Also, module-oblivious domains
increase wire length (e.g., for domain control logic), since cells in
the same domain may be spread out more across a chip. Despite hav-
ing higher overhead, module-oblivious domains afford significantly
higher power and energy reductions than module-based domains
(Section VI). Furthermore, area and wiring overheads did not result
in any change in cycle time, as the place and route tool was able to
optimize the design for the same timing target. This is not surprising,
considering that embedded processors are optimized for low power
rather than high performance. Note that area and wiring overheads
for module-oblivious domains can be reduced with domain-aware
placement and routing optimizations that group cells that belong to
the same domain [71]. Such optimizations are beyond the scope of
current work.

VI. RESULTS

In this section, we evaluate and analyze the power benefits of
module-oblivious power gating compared to aggressive module-based
power gating. Note that results for module-based power gating are
optimistic, since we allow even software-invisible modules to be
power gated. We also do not account for any overhead for hardware-
based monitoring logic for module-based power gating. Figure 9
compares the leakage energy savings provided by different power
gating techniques. The stacked bars in the figure correspond to three
different scenarios. The overall height of a stack shows the potential
benefits of the technique when no implementation or instrumentation

8

overheads are considered, i.e., the maximum potential benefits. The
next level in a stacked bar shows benefits after static and dynamic
overheads of domain isolation and state retention are accounted for,
and the lowest level in a stack shows benefits when accounting for
isolation, retention, and software instrumentation overheads. Note that
we use the industry-standard UPF format to accurately account for
the implementation overheads of power gating. Note also that for
our instrumentation overheads, we have conservatively assumed the
software approach with the highest overhead – binary instrumentation
with dedicated power gating instructions (Section IV-D) – and have
accounted for both static and dynamic energy overheads.
Module-oblivious vs. Module-based Domains:
Figure 9 shows that power gating module-oblivious domains can
provide significant benefits over conventional module-based domains.
On average, power gating on module-oblivious domains provides
1.4× more leakage savings than the maximum savings that can
be achieved with module-based domains (Oracle (Module-based))
and 2× more savings than hardware-based management of module-
based domains.6 Figure 10 provides a visualization that explains
why module-oblivious domains provide more opportunities for power
gating than module-based domains. The figure is a type of correlation
matrix that shows the power gating correlation between different sub-
module pairs (sub-module1, sub-module2) in the processor,7 where
power gating correlation is defined as the fraction of cycles that the
two sub-modules, sub-module1 and sub-module2, are both idle at the
same time. We have defined the color scale such that cooler colors
mean that the sub-modules are more frequently idle at the same time
and therefore can be power gated together.

Figure 10a shows the power gating correlation for module-based
domains, and Figure 10b is for module-oblivious domains. The
different sub-modules in the two matrices are arranged such that
sub-modules belonging to the same domain form adjacent rows and
columns. The dashed boxes along the main diagonal encircle all the
power gating correlation scores for pairs of sub-modules that belong
to the same power domain (Figure 4 shows the composition of each
module-oblivious domain, and Figure 8 shows the composition of
each module-based domain).

Module-based domains do not account for the fact that different
parts of the same microarchitectural modules may have uncorre-
lated activity profiles; as a result, they provide fewer opportunities
for power gating. A single sub-module (even a single gate!) with
high activity or uncorrelated idle times can sabotage power gating
opportunities for an entire domain. For example, even though large
portions of the domains in Figure 10a are “cool”, the small number of
“hot” cells in each domain prevent many power gating opportunities
for the domains. Figure 10a shows that in many cases, moving a
small number of gates to a different domain could provide more
opportunities for power gating larger areas of logic for longer periods
of time. This explains the significant improvement in benefits seen
in Figure 9 for module-oblivious power gating over module-based
power gating. By forming domains that contain logic from different
modules with similar activity profiles, module-oblivious domains do
not allow more active logic to ruin power gating opportunities for
less active logic in the same module.
Managing Module-oblivious Domains:
While module-oblivious domains provide significant potential for
power benefits, they cannot be managed by conventional software-
or hardware-based management techniques (Section III). Figure 9
compares the benefits of the proposed software-hardware co-analysis

6Note that these results correspond to full-fledged UPF implementations of power
gating that account for all implementation overheads.

7Each sub-module corresponds to one of the module partitions represented as pie
sections in Figure 4.

technique for managing module-oblivious domains, which we refer
to hereafter as co-analysis, against oracular management. Oracular
management assumes perfect knowledge of inputs to make optimal
management decisions that exploit every possible cycle of profitable
power gating. Co-analysis, on the other hand, uses Xs for inputs to
guarantee that power gating decisions will be safe for all possible
inputs, since actual inputs are not known at compile time, when co-
analysis is performed. Also, since inputs can affect the control paths
taken through a program, co-analysis only decides to power gate at
a specific point (static instruction) in a program when a domain will
not be activated by any possible control path flowing through that
point. This ensures safety under all scenarios, even input-dependent
data and control. In spite of this conservative approach, results show
that co-analysis is a very effective management technique for module-
oblivious domains, as it’s power benefits are within 8% of optimal
(oracle) management of module-oblivious domains.

Co-analysis can be used to generate domain management decisions
for any set of power domains, no matter how they are formed. We
evaluate co-analysis also for module-based domains and compare the
benefits achieved against those achieved by state-of-the-art hardware-
based management (IdleCount). Figure 9 shows that co-analysis can
save (12%) more energy than hardware-based domain management
for module-based domains, even though we assume no hardware
overhead for implementing IdleCount. In fact, the benefits of co-
analysis are within 6% of optimal (oracle) for module-based do-
mains. Co-analysis has an advantage over hardware-based domain
management even for module-based domains, since co-analysis uses
application information to create a tailored power gating strategy
for each application, whereas a hardware-based technique necessarily
uses the same hard-wired power gating strategy for all applications.
Since hardware-based management techniques must apply the same
strategy to different applications or application phases that may have
different patterns of activity and idleness, they may miss opportunities
when power gating is applied too conservatively or incur overheads
when power gating is applied too aggressively. For example, a domain
managed by IdleCount necessarily spends a fraction of a profitable
idle period powered up, as it counts idle cycles before deciding to
power down. Also, if a power domain goes to sleep but is needed by
an application in fewer cycles than its wakeup latency, the energy
penalty for wakeup can cause negative energy savings. In short,
the hardware controller for IdleCount must guess the length of idle
periods without knowing whether they will be longer than the break-
even point. Co-analysis, on the other hand, makes application-aware
annotation decisions that account for the break-even point, so it can
apply power gating aggressively without ever causing negative energy
savings. Finally, note that our implementation is for 65nm technology
(Section V), where the leakage power is only 29% of total power. The
benefits of our technique are expected to increase for lower (planar)
technology nodes, where the problem of leakage power increases
significantly [7], [11].
Sensitivity Analysis:
We also compare the power gating techniques across different num-
bers of power domains and different domain wakeup latencies. The
sub-figures of Figure 9 compare the leakage reduction benefits of
different power gating techniques for different numbers of domains.
Since more domains imply increased specialization of each domain
and better adaptation to the activity profile of an application, the
potential benefits of power gating generally increase as the number
of domains increases. However, our analysis shows that benefits vary
by only a few percent for two, three, or four domains. The reason for
this behavior is that most of the benefits provided by power gating
come from powering down logic with long, correlated idle periods.
As illustrated in Figure 10, module-oblivious domains enhance such

9

1 3 10

Wakeup Latency (Cycles)

0

10

20

30

40

50

60

70

80

L
e
a
k
a
g

e
 E

n
e
rg

y
 S

a
v
in

g
s
 (

%
)

 Oracle (Module Oblivious)

 Co-Analysis (Module Oblivious)

 Oracle (Module Based)

 Co-Analysis (Module Based)

 Idle Count 5 (Module Based)

 Idle Count 10 (Module Based)

 Idle Count 100 (Module Based)

 + +

 +

Potential Savings

Savings with Isolation and Retention Overheads

Savings with Isolation, Retention, and Instrumentation Overheads

(a) Two Power Domains

1 3 10

Wakeup Latency (Cycles)

0

10

20

30

40

50

60

70

80

L
e
a
k
a
g

e
 E

n
e
rg

y
 S

a
v
in

g
s
 (

%
)

 Oracle (Module Oblivious)

 Co-Analysis (Module Oblivious)

 Oracle (Module Based)

 Co-Analysis (Module Based)

 Idle Count 5 (Module Based)

 Idle Count 10 (Module Based)

 Idle Count 100 (Module Based)

 + +

 +

Potential Savings

Savings with Isolation and Retention Overheads

Savings with Isolation, Retention, and Instrumentation Overheads

(b) Three Power Domains

1 3 10

Wakeup Latency (Cycles)

0

10

20

30

40

50

60

70

80

L
e
a
k
a
g

e
 E

n
e
rg

y
 S

a
v
in

g
s
 (

%
)

 Oracle (Module Oblivious)

 Co-Analysis (Module Oblivious)

 Oracle (Module Based)

 Co-Analysis (Module Based)

 Idle Count 5 (Module Based)

 Idle Count 10 (Module Based)

 Idle Count 100 (Module Based)

 + +

 +

Potential Savings

Savings with Isolation and Retention Overheads

Savings with Isolation, Retention, and Instrumentation Overheads

(c) Four Power Domains
Fig. 9: Comparison of leakage energy savings provided by different domain management
and formation techniques for different numbers of power domains. Results in each stack
(from top to bottom) correspond to maximum potential benefits of the technique, benefits
after accounting for isolation and retention overheads, and benefits after accounting for
isolation, retention, and instrumentation overheads.

(a) module-based domains

(b) module-oblivious domains

Fig. 10: These “cool” maps compare the
potential for power gating between module-
based and module-oblivious domains. Cooler
colors represent that the logic in a domain
is idle together and has more potential to be
power gated.

96.7% 96.2% 96.1%

50%

60%

70%

80%

90%

100%

2	Domains 3	Domains 4	Domains
Domain	1 Domain	2 Domain	3 Domain	4

Fig. 11: Most of the energy savings provided by module-oblivious
domains are contributed by only a small number of mostly-idle
domains.

TABLE V: Performance Overhead (%) introduced by different power
domain management techniques.

Domains Wakeup IC 5 IC 10 IC 100 Co-analysis

2
1 2.43 2.26 0.23 3.90
3 4.86 4.52 0.47 3.62
10 13.38 12.40 1.31 3.40

3
1 3.19 2.35 0.23 6.37
3 6.39 4.71 0.47 4.67
10 17.59 12.96 1.31 3.78

4
1 9.18 2.35 0.23 6.59
3 18.36 4.71 0.47 4.87
10 50.49 12.96 1.31 3.95

10

power gating opportunities by relocating logic that would sabotage
power gating opportunities for a domain to a different domain with
more correlated behavior. This has the effect of collecting logic
from different modules into one or more domains that are almost
always off. Since only two domains are needed to divide logic
into mostly-off and mostly-on domains, only two module-oblivious
domains are needed to achieve most of the benefits that they can
provide. Figure 11 illustrates this point by showing the percentage
of energy savings that each module-oblivious domain contributes to
the total. For two, three, and four domains, only one of the domains
contributes the majority (96%) of savings (the coolest domain in
Figure 10b). This motivates a design with only two domains, since
domain isolation and management costs are lower for fewer domains.
Module-based domains show similar behavior; however, the presence
of logic with uncorrelated activity within some modules limits the
length of idle periods and consequently the benefits that can be
achieved with module-based domains.

The different clusters of bars within each sub-figure of Figure 9
compare the leakage reduction benefits of different power gating
approaches for different wakeup latencies (1, 3, and 10 cycles).8 As
a result, potential benefits decrease with longer wakeup latencies.
Shorter wakeup latencies allow power gating to be applied aggres-
sively for shorter idle periods, but this may increase instrumentation
overhead due to frequent powering down and up of domains. Our
application-aware co-analysis approach accounts for instrumentation
overhead and wakeup latency during binary annotation to ensure
that a power domain is only powered down when the net effect
reduces energy. On average, the time between consecutive power
gating decisions is 98 cycles, while the minimum and maximum times
between decisions are 5 and 8127 cycles, respectively, demonstrating
that correlated activity across gates in different modules often exists
at a coarse time granularity. Table V characterizes the performance
impact of instrumentation overhead for different numbers of domains
and different wakeup latencies, and compares against the performance
overheads introduced by hardware-based domain management (Idle-
Count). In the table, we present the overhead of our most costly
binary instrumentation technique (inserting power gating instructions)
under the column titled ‘Co-analysis’. Since inserting power gating
instructions increases runtime, the column represents both perfor-
mance and energy overhead. Results show that co-analysis has lower
performance overhead than IdleCount for low idle count thresholds.
While IdleCount has slightly lower performance overhead than co-
analysis for a large idle count threshold (100), it loses 100 cycles
of potential power gating opportunity for each idle period. In any
case, the leakage savings of co-analysis significantly outweigh those
of IdleCount (Figure 9), since the hardware-based technique cannot
be used to manage module-oblivious domains without incurring
prohibitively large implementation overheads.

VII. CONCLUSIONS

In this paper, we showed that module-oblivious power gating
can provide significantly more leakage savings than state-of-the-art
aggressive module-based power gating by allowing larger areas of
a processor to be powered down for longer periods of time. Since
conventional software- and hardware-based management techniques
cannot be applied for module-oblivious power gating, we presented
a novel technique for low-cost management of module-oblivious

8The domain wakeup latency of 1 cycle is the most realistic for our small embedded
processor [72], [29]. We also evaluated 100- and 1000-cycle wakeup latencies in our
sensitivity analysis; however, we omitted the results since they showed the same trend
as 10-cycle results. Since, it is only profitable to power down a domain if it will be idle
for longer than the wakeup latency, wakeup latency has the effect of a low-pass filter
on domain power-down/up decisions during analysis. I.e., a given wakeup latency filters
out idle periods that are shorter than the wakeup latency.

power domains in embedded processors, based on input-independent
hardware-software co-analysis. Our technique is automated, does
not require programmer intervention, and incurs low management
overhead. We demonstrated that module-oblivious power gating based
on our technique reduces leakage energy by 2× with respect to
state-of-the-art aggressive module-based power gating for a common
embedded processor. Our technique for management of module-
oblivious power domains achieves leakage energy savings that are
within 8% of those achieved by optimal oracular management.
Finally, our technique for managing module-oblivious domains is
effective even at managing conventional module-based domains.
It saves 12% more energy than an idealized implementation of
IdleCount – a hardware-based domain management technique for
module-based domains. Our benefits are within 6% of optimal for
module-based domains.

ACKNOWLEDGEMENTS

This work was supported in part by NSF, SRC, and CFAR, within
STARnet, a Semiconductor Research Corporation program sponsored
by MARCO and DARPA. The authors would also like to thank
anonymous reviewers, Arindam Banerjee and Seokhyeong Kang for
their feedback.

REFERENCES

[1] Adam Dunkels, Joakim Eriksson, Niclas Finne, Fredrik Osterlind, Nicolas Tsiftes,
Julien Abeillé, and Mathilde Durvy. Low-Power IPv6 for the internet of things. In
Networked Sensing Systems (INSS), 2012 Ninth International Conference on, pages
1–6. IEEE, 2012.

[2] Michele Magno, Luca Benini, Christian Spagnol, and E Popovici. Wearable low
power dry surface wireless sensor node for healthcare monitoring application. In
Wireless and Mobile Computing, Networking and Communications (WiMob), 2013
IEEE 9th International Conference on, pages 189–195. IEEE, 2013.

[3] Chulsung Park, Pai H Chou, Ying Bai, Robert Matthews, and Andrew Hibbs. An
ultra-wearable, wireless, low power ECG monitoring system. In Biomedical Circuits
and Systems Conference, 2006. BioCAS 2006. IEEE, pages 241–244. IEEE, 2006.

[4] Russell Tessier, David Jasinski, Atul Maheshwari, Aiyappan Natarajan, Weifeng
Xu, and Wayne Burleson. An energy-aware active smart card. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 13(10):1190–1199, 2005.

[5] Ross Yu and Thomas Watteyne. Reliable, Low Power Wireless Sensor Networks
for the Internet of Things: Making Wireless Sensors as Accessible as Web Servers.
Linear Technology, 2013.

[6] G. Hackmann, Weijun Guo, Guirong Yan, Zhuoxiong Sun, Chenyang Lu, and
S. Dyke. Cyber-Physical Codesign of Distributed Structural Health Monitoring with
Wireless Sensor Networks. Parallel and Distributed Systems, IEEE Transactions
on, 25(1):63–72, Jan 2014.

[7] International technology roadmap for semiconductors 2.0 2015 edition executive
report. Technical report.

[8] Henry Blodget, Marcelo Ballve, Tony Danova, Cooper Smith, John Heggestuen,
Mark Hoelzel, Emily Adler, Cale Weissman, Hope King, Nicholas Quah, John
Greenough, and Jessica Smith. The internet of everything: 2015. BI Intelligence,
2014.

[9] Dave Evans. The internet of things: How the next evolution of the internet is
changing everything. April 2011.

[10] Gil Press. Internet of Things By The Numbers: Market Estimates And Forecasts.
Forbes, 2014.

[11] Kaushik Roy, Saibal Mukhopadhyay, and Hamid Mahmoodi-Meimand. Leakage
current mechanisms and leakage reduction techniques in deep-submicrometer
CMOS circuits. Proceedings of the IEEE, 91(2):305–327, 2003.

[12] Danbee Park, Jungseob Lee, Nam Sung Kim, and Taewhan Kim. Optimal algorithm
for profile-based power gating: A compiler technique for reducing leakage on
execution units in microprocessors. In Computer-Aided Design (ICCAD), 2010
IEEE/ACM International Conference on, pages 361–364, Nov 2010.

[13] Vasileios Kontorinis, Amirali Shayan, Dean M. Tullsen, and Rakesh Kumar.
Reducing Peak Power with a Table-driven Adaptive Processor Core. In Proceedings
of the 42Nd Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 42, pages 189–200, New York, NY, USA, 2009. ACM.

[14] Paula Petrica, Adam M. Izraelevitz, David H. Albonesi, and Christine A. Shoe-
maker. Flicker: A Dynamically Adaptive Architecture for Power Limited Multicore
Systems. SIGARCH Comput. Archit. News, 41(3):13–23, June 2013.

[15] Jürgen Teich. Hardware/software codesign: The past, the present, and predicting
the future. Proceedings of the IEEE, 100(Special Centennial Issue):1411–1430,
2012.

[16] A Ahmed and Wayne Wolf. Hardware/software interface codesign for embedded
systems. 2005.

[17] ARM. Internet of Things IoT.
[18] Leo Sun. ARM Holdings PLC Dives Deeper Into the Internet of Things.
[19] National Instruments. Compile Faster with the LabVIEW FPGA Compile Cloud

Service.
[20] Cloud Compiling. Cloud Compiling.

11

[21] ARM. ARM mbed IoT Device Platform.
[22] Jacob Borgeson. Ultra-low-power pioneers: TI slashes total MCU power by 50

percent with new “Wolverine” MCU platform. Texas Instruments White Paper,
2012.

[23] ARM. Cortex-A9 Technical Reference Manual.
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc .ddi0388e/index.html.

[24] ARM. ARM Cortex-A15 MPCore Processor Technical Reference
Manual. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc
.ddi0438i/CJHEAECF.html.

[25] Atmel. AT06549: Ultra Low Power Techniques.
http://www.atmel.com/images/atmel-42411-ultra-low-power-techniques-
at06549 application-note.pdf.

[26] Intel. The Power Management IC for the Intel Atom Pro-
cessor E6xx Series and Intel Platform Controller Hub EG20T.
http://www.intel.com/content/dam/www/public/us/en /documents/white-
papers/atom-e6xx-power-management-ic-paper.pdf.

[27] Intel. Dynamic Power Gating Implementation on Intel Embedded Media and Graph-
ics Driver. http://www.intel.com/content/dam/www/public/us/en /documents/white-
papers/emgd-dynamic-power-gating-paper.pdf.

[28] Zhigang Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and
P. Bose. Microarchitectural techniques for power gating of execution units. In
Low Power Electronics and Design, 2004. ISLPED ’04. Proceedings of the 2004
International Symposium on, pages 32–37, Aug 2004.

[29] Anita Lungu, Pradip Bose, Alper Buyuktosunoglu, and Daniel J. Sorin. Dynamic
Power Gating with Quality Guarantees. In Proceedings of the 2009 ACM/IEEE
International Symposium on Low Power Electronics and Design, ISLPED ’09,
pages 377–382, New York, NY, USA, 2009. ACM.

[30] Youngsoo Shin, Jun Seomun, Kyu-Myung Choi, and Takayasu Sakurai. Power
Gating: Circuits, Design Methodologies, and Best Practice for Standard-cell VLSI
Designs. ACM Trans. Des. Autom. Electron. Syst., 15(4):28:1–28:37, October 2010.

[31] H. Tabkhi and G. Schirner. Application-Guided Power Gating Reducing Register
File Static Power. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 22(12):2513–2526, Dec 2014.

[32] J. Kao, S. Narendra, and A. Chandrakasan. MTCMOS hierarchical sizing based
on mutual exclusive discharge patterns. In Design Automation Conference, 1998.
Proceedings, pages 495–500, June 1998.

[33] Mohab Anis, Mohamed Mahmoud, Mohamed Elmasry, and Shawki Areibi. Dy-
namic and leakage power reduction in mtcmos circuits using an automated efficient
gate clustering technique. In Proceedings of the 39th Annual Design Automation
Conference, DAC ’02, pages 480–485, New York, NY, USA, 2002. ACM.

[34] Changbo Long and Lei He. Distributed Sleep Transistor Network for Power
Reduction. In Proceedings of the 40th Annual Design Automation Conference,
DAC ’03, pages 181–186, New York, NY, USA, 2003. ACM.

[35] A. Abdollahi, F. Fallah, and M. Pedram. An effective power mode transition tech-
nique in mtcmos circuits. In Design Automation Conference, 2005. Proceedings.
42nd, pages 37–42, June 2005.

[36] Kimiyoshi Usami and Naoaki Ohkubo. A design approach for fine-grained run-
time power gating using locally extracted sleep signals. In Proc. of ICCD’06, pages
155–161, 2006.

[37] Ashoka Sathanur, Antonio Pullini, Luca Benini, Alberto Macii, Enrico Macii, and
Massimo Poncino. Timing-driven Row-based Power Gating. In Proceedings of the
2007 International Symposium on Low Power Electronics and Design, ISLPED
’07, pages 104–109, New York, NY, USA, 2007. ACM.

[38] Y. Kanno, H. Mizuno, Y. Yasu, K. Hirose, Y. Shimazaki, T. Hoshi, Y. Miyairi,
T. Ishii, Tetsuy. Yamada, T. Irita, T. Hattori, K. Yanagisawa, and N. Irie. Hierar-
chical Power Distribution With Power Tree in Dozens of Power Domains for 90-nm
Low-Power Multi-CPU SoCs. Solid-State Circuits, IEEE Journal of, 42(1):74–83,
Jan 2007.

[39] Tong Xu, Peng Li, and Boyuan Yan. Decoupling for power gating: Sources of
power noise and design strategies. In Design Automation Conference (DAC), 2011
48th ACM/EDAC/IEEE, pages 1002–1007, June 2011.

[40] De-Shiuan Chiou, Da-Cheng Juan, Yu-Ting Chen, and Shih-Chieh Chang. Fine-
Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization. In
Design Automation Conference, 2007. DAC ’07. 44th ACM/IEEE, pages 81–86,
June 2007.

[41] B.H. Calhoun, F.A. Honore, and A. Chandrakasan. Design methodology for fine-
grained leakage control in MTCMOS. In Low Power Electronics and Design, 2003.
ISLPED ’03. Proceedings of the 2003 International Symposium on, pages 104–109,
Aug 2003.

[42] Abhinav Agarwal and Arvind. Leveraging Rule-based Designs for Automatic Power
Domain Partitioning. In Proceedings of the International Conference on Computer-
Aided Design, ICCAD ’13, pages 326–333, Piscataway, NJ, USA, 2013. IEEE
Press.

[43] Lizhong Chen and Timothy M Pinkston. Nord: Node-router decoupling for
effective power-gating of on-chip routers. In Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 270–281. IEEE
Computer Society, 2012.

[44] Reetuparna Das, Satish Narayanasamy, Sudhir K Satpathy, and Ronald G Dres-
linski. Catnap: energy proportional multiple network-on-chip. In ACM SIGARCH
Computer Architecture News, volume 41, pages 320–331. ACM, 2013.

[45] Lizhong Chen, Di Zhu, Massoud Pedram, and Timothy M Pinkston. Power punch:
Towards non-blocking power-gating of noc routers. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA), pages 378–389.
IEEE, 2015.

[46] Danbee Park, Jungseob Lee, Nam Sung Kim, and Taewhan Kim. Optimal algorithm
for profile-based power gating: A compiler technique for reducing leakage on

execution units in microprocessors. In Proceedings of the International Conference
on Computer-Aided Design, pages 361–364. IEEE Press, 2010.

[47] Randal E Bryant. Symbolic simulationtechniques and applications. In Proceedings
of the 27th ACM/IEEE Design Automation Conference, pages 517–521. ACM, 1991.

[48] A. Kolbi, J. Kukula, and R. Damiano. Symbolic RTL simulation. In Design
Automation Conference, 2001. Proceedings, pages 47–52, 2001.

[49] Tao Feng, L. C. Wang, Kwang-Ting Cheng, M. Pandey, and M. S. Abadir. Enhanced
symbolic simulation for efficient verification of embedded array systems. In Design
Automation Conference, 2003. Proceedings of the ASP-DAC 2003. Asia and South
Pacific, pages 302–307, Jan 2003.

[50] P. Jain and G. Gopalakrishnan. Efficient symbolic simulation-based verification
using the parametric form of boolean expressions. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 13(8):1005–1015, Aug 1994.

[51] L. Liu and S. Vasudevan. Efficient validation input generation in RTL by hybridized
source code analysis. In Design, Automation Test in Europe Conference Exhibition
(DATE), 2011, pages 1–6, March 2011.

[52] Hari Cherupalli, Rakesh Kumar, and John Sartori. Exploiting dynamic timing
slack for energy efficiency in ultra-low-power embedded systems. In Computer
Architecture (ISCA), 2016 43th Annual International Symposium on. IEEE, 2016.

[53] Y. Zhang, Z. Chen, and J. Wang. Speculative symbolic execution. In Software
Reliability Engineering (ISSRE), 2012 IEEE 23rd International Symposium on,
pages 101–110, Nov 2012.

[54] O Girard. OpenMSP430 project. available at opencores.org, 2013.
[55] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: Three

decades later. Commun. ACM, 56(2):82–90, February 2013.
[56] K. Hamaguchi. Symbolic simulation heuristics for high-level design descriptions

with uninterpreted functions. In High-Level Design Validation and Test Workshop,
2001. Proceedings. Sixth IEEE International, pages 25–30, 2001.

[57] Steven Cherry. Hacking Pacemakers.
[58] Wikipedia. Bare Machine, Wikipedia.
[59] Texas Instruments. StarterWare.
[60] ARM. Building BareMetal ARM systems with GNU.
[61] Lior Rokach and Oded Maimon. Clustering methods. In Data mining and

knowledge discovery handbook, pages 321–352. Springer, 2005.
[62] Zhigang Hu, Alper Buyuktosunoglu, Viji Srinivasan, Victor Zyuban, Hans Ja-

cobson, and Pradip Bose. Microarchitectural techniques for power gating of
execution units. In Proceedings of the 2004 international symposium on Low power
electronics and design, pages 32–37. ACM, 2004.

[63] Wikipedia. List of wireless sensor nodes, 2016. [Online; accessed 7-April-2016].
[64] Synopsys. Design Compiler User Guide. http://www.synopsys.com/.
[65] Cadence. Encounter Digital Implementation User Guide. http://www.cadence.com/.
[66] Bo Zhai, Sanjay Pant, Leyla Nazhandali, Scott Hanson, Javin Olson, Anna Reeves,

Michael Minuth, Ryan Helfand, Todd Austin, Dennis Sylvester, et al. Energy-
efficient subthreshold processor design. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 17(8):1127–1137, 2009.

[67] IEEE Standard for Design and Verification of Low-Power Integrated Circuits. IEEE
Std 1801-2013 (Revision of IEEE Std 1801-2009), pages 1–348, May 2013.

[68] Synopsys. Power Compiler User Guide. http://www.synopsys.com/.
[69] Synopsys. PrimeTime User Guide. http://www.synopsys.com/.
[70] EEMBC, Embedded Microprocessor Benchmark Consortium.
[71] Hailin Jiang and Malgorzata Marek-Sadowska. Power-gating aware floorplanning.

In Quality Electronic Design, 2007. ISQED’07. 8th International Symposium on,
pages 853–860. IEEE, 2007.

[72] P. Royannez, H. Mair, F. Dahan, M. Wagner, M. Streeter, L. Bouetel, J. Blasquez,
H. Clasen, G. Semino, J. Dong, D. Scott, B. Pitts, C. Raibaut, and Uming Ko. 90nm
low leakage soc design techniques for wireless applications. In Solid-State Circuits
Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE International,
pages 138–589 Vol. 1, Feb 2005.

12

