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Abstract—Sensors in mobile devices and IoT systems
increasingly generate data that may contain private
information of individuals. Generally, users of such systems are
willing to share their data for public and personal benefit as
long as their private information is not revealed. A fundamental
challenge lies in designing systems and data processing
techniques for obtaining meaningful information from sensor
data, while maintaining the privacy of the data and individuals.
In this work, we explore the feasibility of providing local
differential privacy on ultra-low-power systems that power
many sensor and IoT applications. We show that low resolution
and fixed point nature of ultra-low-power implementations
prevent privacy guarantees from being provided due to
low quality noising. We present techniques, resampling and
thresholding, to overcome this limitation. The techniques, along
with a privacy budget control algorithm, are implemented in
hardware to provide privacy guarantees with high integrity.
We show that our hardware implementation, DP-Box, has low
overhead and provides high utility, while guaranteeing local
differential privacy, for a range of sensor/IoT benchmarks.
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I. INTRODUCTION

With the rapid technology development of low-power
sensors and computing systems, sensor networks or Internet
of Things (IoT) are becoming increasingly wide-spread and
power a large variety of applications, including, but not
limited to, wearables [1], implantables [2], environmental,
health, and structural monitors [3], and mobile systems [4].
All trends [5] and predictions [6] point to further ubiquity
of these sensor and IoT systems in the future.

Unfortunately, sensors in mobile devices or IoT systems
generate data that may contain private information of indi-
viduals. Data on medical health [7], location [8], energy con-
sumption [9], and personal preferences [10], for example, are
routinely transmitted by such systems to the cloud or peers.

Generally, users of mobile or IoT systems are willing to
share their data for public benefit (and, ultimately, their own
benefit), but at the same time they do not want their private
information to be revealed [11]. For example, a user may
seek to benefit from the recipes designed by a web-based
weight loss program without having to reveal one’s true
weight. Another user may seek to benefit from the traffic
alerts generated by a web-based alert system [12] without
revealing one’s true location. Yet another user may be willing
to help a cloud-based learning model [13] train, as long as
one’s true data on home energy consumption or thermostat

preferences are not revealed. A fundamental challenge lies
in designing systems and data processing techniques for
obtaining meaningful information from sensor data, while
maintaining the privacy of the data and individuals.

Differential privacy [14] is an approach to providing data
privacy that has gained significant attention over the past few
years in the data-mining and machine-learning communities.
It can used to gain statistical information from large-scale
database [15] while ensuring individual privacy by adding
properly scaled and distributed noise to the statistical query
output (Section II-A). Conventional differential privacy (DP)
mechanisms assume that there is a trusted database server
collecting all the personal data. However, there are many
potential attacks that can reveal the private data before they
reach the trusted party [16]. This is especially a big issue
in sensor networks or IoT systems. For such systems, it
is also possible to apply DP in the local setting (or Local
Differential Privacy), where there is no trusted data curator,
and each sensor submits the private data after adding noise
individually (Section II-B). In this case, when others receive
noised output from a sensor, they should be unable to tell
the original sensor data because all the possible sensor data
have similar probabilities to report the same noised output.

In this work, we explore the feasibility of providing local
differential privacy (LDP) on ultra-low-power (ULP) systems
that power many sensor and IoT system applications. ULP
processors are already the mostly widely used processors
today. In fact, due to their ubiquity in sensor and IoT systems,
their production already far exceeds personal computers
and mobile processors [17]. The 2015 ITRS report [18]
projects that sensor and IoT applications will continue to
rely on such processors in the future. Sensors often appear
as co-processors or peripherals in these processors.

We find that naive hardware implementation of differential
privacy mechanism cannot guarantee local privacy of
individual sensors in ULP systems (Section III-A3). Energy
constraints require ULP processors and sensors to support low
resolution, fixed point hardware. We show that such hardware
cannot generate the quality of noise needed to provide
local differential privacy guarantees. In order to overcome
this limitation, we propose new techniques - resampling
and thresholding that can ensure local privacy in spite of
low resolution and fixed point hardware (Section III-B).
We also propose a privacy budget control technique for
such hardware that exploits thresholding and resampling



to reduce privacy loss (Section III-C). We then implement
these techniques in a hardware module, called DP-Box
(Section IV) - DP-Box can either be part of the processor
or the sensor controller and is responsible for noising sensor
data in a way that guarantees local privacy with high integrity.
Finally, we discuss the latency and utility characteristics of
our implementation for a suite of sensor and IoT datasets
(Section VI). This paper makes the following contributions:
• This is the first work exploring feasibility of supporting

local differential privacy on ULP systems. We show that
the low resolution and fixed point nature of ULP hardware
prevents local differential privacy guarantees from being
provided with a conventional noising implementation.

• We propose a modified implementation supporting
resampling and thresholding to guarantee local differential
privacy on ULP hardware. These techniques generate
requisite noise distribution in spite of low resolution,
fixed point hardware implementation. To the best of
our knowledge, this is the first work presenting local
differential privacy implementation on ULP hardware.

• We propose the first privacy budget control algorithm for lo-
cal differential privacy on ULP hardware. The algorithm re-
duces the total privacy loss over an aggregate set of queries.

• We present the first evaluation of hardware support
for local differential privacy for ULP systems. Our
hardware implementation, DP-Box, has low overhead and
provides high utility, while guaranteeing local differential
privacy, over a range of sensor/IoT benchmarks. We show
that DP-Box can also be easily configured to support
Randomized Response [19] for categorical data privacy.
The rest of the paper is organized as follows. In Section II,

we provide background on differential privacy and how it
works in a sensor and IoT environment. Section III points
out the vulnerability of differential privacy implemented
on fixed-point hardware and analyzes in detail how to
implement and guarantee differential privacy for ULP
systems. Section IV discusses in detail our proposed
DP-box architecture. Section V describes how we evaluate
the performance of the DP-box. Section VI presents
experimental results. Section VII concludes.

II. BACKGROUND

A. Differential Privacy

Assume that there exist two identical numeric databases D1
and D2 except one element: D1 with a person A’s information
and D2 without it. Such databases D1 and D2 are called ad-
jacent. In that case, we get two different query outputs when
applying the same statistical query like mean on those two
databases. Then, the person A’s information can be revealed
from the two query outputs, which implies that returning
exact query output can leak private information entirely.

Differential privacy (DP) is a standard notion of privacy
that was originally developed by Dwork, McSherry, Nissim,
and Smith [20] and has gained significant attention over the
years [14]. DP ensures that the probability that a statistical
query will output a given result is almost the same whether

it is applied on D1 or D2. In more detail, a randomized
mechanism A gives ε-DP if for all adjacent databases D1
and D2 and all S⊂Range(A ),

Pr[A (D1)∈S]≤exp(ε)Pr[A (D2)∈S], (1)
where A (D1) is the random output of the mechanism A
when the query f is applied to the database D1. In other
words, given a DP output, the likelihood ratio between any
adjacent two databases is similar as shown in Fig. 1 and
furthermore bounded by exp(ε) ≈ 1+ ε when ε is small.
Thus smaller ε provides higher level of privacy.

While there are several mechanisms to implement
differential privacy [21], the most popular technique is the
Laplace mechanism [20], which adds random noise with
a zero-mean Laplace distribution to the query output f (D).
The standard deviation of the Laplace distribution is scaled
depending on ε and the (global) sensitivity of a query f .
The sensitivity GS( f ) of a query f is defined as

GS( f )= max
adjacentD1,D2

| f (D1)− f (D2)|. (2)

For instance, the sensitivity of the counting query is 1
because the maximum counting difference between any two
adjacent databases is 1. Similarly, it is possible to calculate
the sensitivity of other statistical queries like mean, variance,
and median. The Laplace mechanism generates output, as
shown in Fig. 1, as a summation of the original query output
f (D) and random noise sample from Lap(GS( f )/ε), i.e.
A (D)= f (D)+Lap(GS( f )/ε), where Lap(λ ) is a random
variable with probability density function

f (x)=
1

2λ
exp(−|x|

λ
), ∀x∈R. (3)

It can be easily proved that the Laplace mechanism satisfies
(1) and guarantees ε-DP. One thing to note is that noise
scaling for DP does not require knowing the contents in the
database but it is dependent only on the sensitivity of the
query (GS( f )) to be computed and the acceptable amount
(ε) of privacy.

Figure 1: Differential privacy.

In order to quantify the privacy leak from answering a
query, we refer to the quantity

`
(y)
D1,D2

= log
Pr[A (D1)=y]
Pr[A (D2)=y]

(4)

as the privacy loss incurred by reporting the value y for
adjacent databases D1 and D2. Intuitively, infinite privacy loss
implies that the private information will be disclosed entirely



when reporting DP output as y, and small privacy loss means
little information leakage. It can be easily seen that the
Laplace mechanism for ε-DP theoretically guarantees that
the privacy loss is always less than ε for all the possible DP
output. This is important to note because in later sections we
show that in practice the privacy loss can not be bounded even
if the Laplace mechanism is implemented in ULP systems.

Rather than simply reporting the exact query output,
DP adds error by perturbing the output; thus masking any
individual private information. However, while the amount
of privacy loss from a single query can be bounded by a
small value, this loss starts accumulating as someone makes
more queries on the database. The composition theorem [22]
states how much total privacy loss in the worst case is
incurred by making multiple queries on a given database:
when a series of queries ( f1, f2,..., fn) is applied and each
gets output with εi-DP, the overall privacy loss is ∑

n
i=1 εi.

This implies that implementing a DP mechanism alone is not
enough and we also need a means to limit the total privacy
loss. The total allowed loss is referred to as privacy budget,
which determines how many queries will be allowed to ask.

A final remark on DP is that there exists a fundamental
tradeoff between privacy and utility, or accuracy, with the us-
age of DP. Utility is often measured with mean absolute error
(MAE) of the DP output with respect to the accurate query
output. For instance, if ε is set too high, we get more accurate
output with higher probability but sensitive data will leak. On
the other hand, small ε will provide better privacy, but the
DP output might not be particularly useful due to large error.

B. Local Differential Privacy

Conventional DP in most of the literature has assumed that
there exists a trusted database where all the original data are
collected and that queries are executed by the trusted database
operator, or data curator, who can have access to all of the
raw data. This model requires the data curator to collect all
of the raw sensor data information into a massive centralized
database and then calculate privacy-preserving statistics on it,
and the user cannot help trusting the data curator. This would
make the private data vulnerable to many potential attacks.

Theoretically it is also possible to apply DP in the local
setting, where there is no trusted data curator, and each sensor
submits the private data after adding noise individually [23].
The comparison between the conventional DP and local DP is
depicted in Fig. 2. This approach is quite simple to implement
and promising in privacy perspective since it does not collect
the raw data at all. In essence, this is a generalization of Ran-
domized Response [19] applied to real-valued numeric data.

In the local DP setting, each user does not want their
private data to be revealed by others who have access to the
sensor data. In other words, given a noised output from a
sensor, it should be unable to tell the original data because
all the possible sensor data have similar probabilities to
report the given noised output. Mathematically, this can be
stated as: in order to guarantee ε-DP for each sensor data,
it is required that for arbitrary two possible inputs x1 and

Figure 2: Differential privacy in different settings: (a)
conventional and (b) local setting.

x2, and any noised DP output y,
Pr[y|x1]≤exp(ε)Pr[y|x2] (5)

One way to satisfy the condition (5) is to apply the Laplace
mechanism locally. If the sensor data x is within the range
[m,M] with the length d=M−m, then it can be proved that
the Laplace mechanism y=x+n with n∼Lap(d/ε) satisfies
(5). This is a very strong privacy guarantee because, even if an
adversary uses his side information and makes the estimation
of the original sensor data into a binary choice problem, the
likelihood ratio between two hypotheses is bounded by 1±ε

when ε is low. Since they are almost equally likely, it is
possible to keep the data private from the adversary.

Statistical queries such as mean, median, or standard
deviation, can be applied to noised data as shown in Fig. 2(b)
to obtain aggregate information of raw data while preserving
individual privacy. In fact, applying any function or query
on DP output still preserves privacy due to the following.
Assuming that the outputs of other users are known, the
query output f (x) is a function of a sensor output x1 that the
adversary wants to disclose. Then, by (5) (denoting g as the
local DP mechanism in the sensor, i.e. DP output y=g(x))
Pr[ f (g(x1))= t]= ∑

y∈{s| f (s)=t}
Pr[ f (y)= t]Pr[g(x1)=y]

≤ ∑
y∈{s| f (s)=t}

Pr[ f (y)= t]exp(ε)Pr[g(x2)=y]

=exp(ε)Pr[ f (g(x2))= t],
(6)

which implies that different sensor data can generate the same
query output with similar probability, thereby satisfying ε-DP.
Another benefit of applying local DP in each sensor is that it
provides a principled way to add noise to the raw sensor data
in a way that allows the system to measure exactly how much
privacy is lost in responding to each sensor data request. In the
following sections, we explain how to implement a hardware
that supports local DP for ULP systems and evaluate the



utility of the statistical queries applied on noised data.

III. IMPLEMENTING
LOCAL DIFFERENTIAL PRIVACY ON ULP HARDWARE

Differential privacy has largely been used in context
of large-scale databases, where energy consumption
is not a constraint. The critical issue in implementing
local differential privacy for ULP systems is that energy
consumption becomes a crucial constraint. As one example,
ULP systems support fixed point hardware, not floating
point hardware, for cost, area, energy, and latency reasons.
No prior work considers the feasibility of implementing
differential privacy in such systems.

A. Local Differential Privacy on Fixed-Point Hardware

Although fixed-point hardware may seem suitable to
implement local differential privacy on ULP systems, its
limited number of bits to represent numbers can lead to
undesired privacy loss, as described below.

1) Random Number Generation: One of the major compo-
nents to implement differential privacy is a random number
generator (RNG). As explained in the previous section, to
guarantee differential privacy, noise that is added to the real
data needs to have a certain probability distribution, and the
most widely used one is the Laplace distribution [20]. While
there are several techniques to generate random numbers [24],
the inversion method [25], [26] is the most commonly used
in energy constrained settings. In order to use the inversion
method, the cumulative distribution function (CDF) of the
desired random variable must first be calculated. Let FX (x)
denote the CDF of a random variable X . Then the inversion
method takes the output u of a uniform random number
generator (URNG) between 0 and 1 as an input and maps
it to the output x, the inverse CDF (ICDF) output of u,
i.e. x = F−1

X (u). This method is especially well suited for
generating the Laplace distribution because 1) it is symmetric
around the mean and 2) it has the closed-form expressions for
the CDF and ICDF, which makes it easy to analyze. Due to
symmetry, half of the ICDF F−1

X (u) of a zero-mean Laplace
distribution with parameter λ , Lap(λ ), can be represented as

F−1
X (u)=−λ log(u) (0<u≤1), (7)

where log is logarithm with base e. Thus, noise n from the
Laplace distribution can be generated from two independent
random numbers u1,u2 from URNG.

n=λ sgn(u1−0.5)log(u2) (8)
In (8), sgn(x) determines the sign of the random number.
As shown in (8), generating every single noise sample
requires a potentially expensive logarithm operation.
However, approximations of (8) can be made using CORDIC
algorithm or a number of polynomial segments of low degree,
which has been applied in many energy-efficient fixed-point
RNG hardware works [25], [26]. In the following, we analyze
the impact of fixed-point representation on noise distribution
and further its impact on local differential privacy.

Figure 3: Simplified block diagram of fixed-point RNG
hardware.

2) Noise Distribution of Fixed-Point RNG Hardware:
Figure 3 shows the simplified block diagram of the
fixed-point RNG hardware using inversion method. Let
Bx and By denote the number of output bits of a URNG
and RNG hardware, respectively. Let us assume that the
sensor output x lies in the range of [m,M] (m ≤ x ≤ M)
with the length d = M−m, i.e. the data measured with a
sensor is a value between m and M. Then theoretically it
is possible to achieve ε-DP using the simple additive noise
mechanism with noise distribution Lap(d/ε) as explained in
the previous section. In other words, by adding n∼Lap(d/ε)
to the sensor output x, reporting x+n enables the specific
sensor output to hide among many other sensor outputs.

Let us first see how the RNG output distribution looks like
with fixed-point representation. The URNG output u with Bx
bits and the RNG output n with By bits can be represented as

u=m2−Bx (m∈{1,2,...,2Bx}) (9)
n=k∆ (k∈{−2By−1,...,−1,0,1,...,2By−1−1}), (10)

respectively; here ∆ is the quantization step decided by the
resolution. As shown in Fig. 3, in fixed-point RNG hardware,
each URNG output u in (9) is mapped to a value − d

ε
log(u)

by (7), and then it is rounded to a nearest value k∆ in (10),
and finally its sign is determined. Figure 4 illustrates the
comparison between the ideal Laplace distribution (Lap(20))
and the fixed-point (FxP) Laplace RNG distribution with
Bx = 17, By = 12, and ∆ = 10/26. As shown in Fig. 4(a),
the FxP RNG output shows almost the identical result
to the ideal Laplace distribution in the area where the
density is high. However, if we zoom into the region near
the tail (see Fig. 4(b)), we can clearly see the difference
between the ideal distribution and the FxP RNG distribution.
Essentially, the FxP RNG output distribution shows the
discrete probability values, which are multiples of 1

2Bx+1 ,
while the ideal distribution has continuous density. Also, the
output generated by the FxP RNG is bounded, while the
ideal distribution has an unbounded range. In fact, from (7)
and (9), we can see that the maximum value that the FxP
RNG can generate is d

ε
Bxlog2. Since Bx plays a critical role

in these two nonidealities, we can increase Bx and make the
FxP RNG output distribution more close to the ideal one.
However, as long as Bx is finite, which is the case in any FxP
RNG hardware, there always exists a large difference in the
tail region. In the following, we will see how this nonideality
in distribution affects the privacy loss defined in (4).



Figure 4: Comparison between the ideal Laplace distribution
and fixed-point RNG output: (a) overall distribution and (b)
zoomed-in tail distribution.

3) Impact on Differential Privacy: The main result of this
section is that a naive implementation of the conventional
DP mechanism in FxP hardware cannot guarantee DP.
In other words, implementing DP mechanism without
considering the FxP RNG architecture may disclose the
entire information about the sensor data even if the system
reports the noised data.

To see why, let us first consider the ideal case. Recall
that, in order to guarantee ε-DP, the noise n ∼ Lap(d/ε)
needs to be generated to implement the Laplace mechanism.
In the ideal case, since n∈ (−∞,∞), applying the Laplace
mechanism to sensor output x∈ [m,M] generates any value
in (−∞,∞) with positive probability. Thus, for any value
of the noised output, the privacy loss is bounded by ε .

However, as shown in the previous section, the FxP RNG
output range is always bounded. In other words, the noise
n generated by the FxP RNG is limited within a range
[−L,+L], instead of (−∞,∞). Thus, when the conventional
Laplace mechanism is used, each sensor output will yield
a different range of the noised output. For example, let us
consider two cases: when the sensor output is either m or M.
When the Laplace mechanism applied with the FxP RNG,
if the data is m, the noised output will be some value in the
range [−L+m,L+m]. On the other hand, if the data is M,
the noised output has a different range [−L+M,L+M] as
shown in Fig. 5. In this case, if the reported noised output is
lower than −L+M, it is possible to know that the original
sensor data cannot be M with probability 1. Similarly, if the
noised output is larger than L+m, the original data cannot

be m. Furthermore, if the noised output is either −L+m
or L+M, then we can exactly know that the sensor data is
m or M, respectively. In terms of privacy loss, this is the
case when privacy loss becomes infinite because there exist
some sensor data that cannot generate the reported noised
output. Since differential privacy is guaranteed only when
privacy loss is bounded over the entire range of the noised
output (see Section II-A), we conclude that differential
privacy is not guaranteed when the Laplace mechanism
is implemented naively with FxP hardware.

Moreover, looking at Fig. 4(b), we can find out that the FxP
RNG cannot generate all the noise values that have zero proba-
bility in the range [−L,+L]. This is because FxP RNG cannot
generate a number with arbitrarily small probability due to the
limited resolution. As shown in Fig. 4(b), some noise values
whose probability in ideal distribution is lower than 1

2Bx+1 can-
not be generated. When noise with this distribution is added to
the sensor data, privacy loss again becomes infinite for some
noised output range. Therefore, simply implementing FxP
RNG for the Laplace distribution and applying the Laplace
mechanism in FxP hardware cannot guarantee local DP.

4) Problem Generalization: It may appear that the
infinite privacy loss problem is caused by FxP hardware
implementation, but, in essence, it originates from the fact
that the numbers representable in digital computers are
quantized with finite precision (even if we use ultra long
floating point numbers). The limited number of bits to
represent real numbers fundamentally poses two problems to
implementing ideal random number distribution guaranteeing
DP, such as Laplace, Gaussian [20], or staircase [21]
distributions, either in hardware or in software:

1) Ideally, a DP-guaranteeing RNG should generate any
number from −∞ to +∞ with positive probability (e.g.
Laplace or Gaussian). However, due to the limited number
of bits, there exist minimum and maximum values that any
digital hardware can represent.

2) In addition, the random numbers are generated from
a uniform random number generator output by applying
some transformation, and due to this fact, we can only
assign a quantized probability mass to each random number
output. However, all the distributions that guarantee DP
(e.g. Laplace, Gaussian, or staircase) have arbitrarily small
probability at their tail regions, which cannot be represented
with finite precision.

Due to these two reasons, any random number (continuous
random variable) generated by digital systems cannot have
the ideal distribution and will, therefore, not guarantee DP. In
fact, [27] points out that naive software implementation of a
DP mechanism using floating point numbers also suffers from
infinite privacy loss for the same reason. In general, any sys-
tems with finite precision to represent real numbers, which is
always the case since infinite number of bits cannot be imple-
mented in digital hardware, will have similar problems [28].

5) Comparison against prior work: While [27] focuses
on how floating-point arithmetic can impact differential
privacy, our work focuses on fixed-point hardware. [28]
notices that precision limitations can cause privacy leak,



Figure 5: Implementing Laplace
mechanism with FxP hardware.

Figure 6: Laplace mechanism with
resampling.

Figure 7: Laplace mechanism with
thresholding.

but does not focus on implementation. Its analysis cannot
be applied in practice because unless the real distribution
of the implemented RNG is known in advance, one cannot
calculate its impact on privacy.

Unlike [27], [28], our paper describes the details and
analytical expression of impact on data privacy caused by
hardware design parameters such as sensor resolution and the
number of bits used in fixed-point hardware (Section III-A).
Also, we propose two simple privacy-guaranteeing operations,
which can be built in hardware with minimal overhead
(Section III-B). We also evaluate the utility for some
aggregate statistical queries like mean, variance, etc. using
the real datasets with the proposed DP-box (Section VI).
Finally, we show that we can perform both effective budget
control and support other privacy-preserving techniques such
as Randomized Response (Section VI).

B. Enabling Local Differential Privacy Guarantees

Here, we propose two new ways to 1) enable local privacy
guarantees on FxP hardware and 2) bound the privacy loss
to the level we want.

It can be proven that the FxP RNG described in
Section III-A2 generates the random number n with the
following probability.

Pr[n=k∆]=
bm1(k)c−dm2(k)e+1

2Bx+1

m1(k)=exp(Bxlog2−ε
∆

d
(k− 1

2
))

m2(k)=exp(Bxlog2−ε
∆

d
(k+

1
2
))

(11)

where bxc and dxe represent the largest integer less than
or equal to x and the smallest integer greater than or equal
to x, respectively.Since the privacy loss is a function of
the FxP RNG output, or k, and the loss tends to increase
as the noise magnitude increases (k is large), it is natural
to consider limiting the magnitude of the noised output in
order to bound the privacy loss and guarantee local DP.

For limiting the noised output magnitude, we propose
two independent mechanisms, resampling and thresholding,
which will be explained in detail next.

1) Resampling: What resampling does is that when the
noised output magnitude is larger than a preset threshold
value, the FxP RNG resamples the noise until the noised
output is within the required range. Without resampling, the
overall noised output range will be [−L+m,L+M] due to

n∈ [−L,+L] and x∈ [m,M]. When resampling is used, the
noised output range is limited to [−nth1+m,nth1+M], where
nth1 is the threshold for resampling. As shown in Fig. 6, the
noised output range of all the sensor data x has the same
range in this case, thus the privacy loss is bounded. If we
set nth1 small, then the privacy loss will be close to the ideal
case, but the noise needs to be resampled more frequently,
which degrades the energy efficiency. On the other hand,
if nth1 is set to be large, then we can achieve good energy
efficiency, but the maximum privacy loss is increased too
much. Thus, it is important to set the threshold nth1 properly.

Thankfully, the threshold nth1 required to bound the
privacy loss to the desired level can be directly calculated
as a function of d, ∆, ε , and Bx. For example, if we want to
bound the maximum privacy loss to be nε when Lap(d/ε)
is implemented in FxP RNG, from (11) it should satisfy:

bm1(k)c−dm2(k)e+1⌊
m1(k+ d

∆
)
⌋
−
⌈
m2(k+ d

∆
)
⌉
+1
≤exp(nε) (12)

Using the fact that m1(k) − 1 < bm1(k)c ≤ m1(k) and
m2(k)≤dm2(k)e<m2(k)+1, (12) yields

k≤−1
2
+

d
ε∆

(Bxlog2+log
(exp(ε ∆

d )−1)(exp((n−1)ε)−1)
1+exp(nε)

).

(13)
In other words, setting the threshold as nth1 = d − ∆

2 +
d
ε
(Bx log2+ log (exp(ε ∆

d )−1)(exp((n−1)ε)−1)
1+exp(nε) ) and implementing

the Laplace mechanism with resampling ensures the privacy
loss less than nε and also guarantees local DP.

2) Thresholding: Thresholding is similar to resampling,
but instead of resampling the noise when the noised output
magnitude is larger than a preset threshold value, the noised
output is rounded to the threshold. When the threshold is
set to be nth2, the overall noised output range becomes
[−nth2 + m, nth2 + M] as shown in Fig. 7. Since all the
noised outputs outside the region [−nth2 + m, nth2 + M]
are mapped to either −nth2 + m or nth2 + M, we can see
higher probabilities at these minimum and maximum values.
Because thresholding generates different output distribution
from resampling, the threshold value to bound the privacy
loss and to guarantee local DP will be different.

Again, the threshold can be calculated as a function
of d, ∆, ε , and Bx. As before, let us assume that we
want to bound the maximum privacy loss to be nε .Since
Pr[n≥ k∆] = bm1(k)c

2Bx , the condition that the privacy loss at



the boundaries should be less than nε can be represented as:
bm1(k)c
bm1(k+ d

∆
)c
≤exp(nε) (14)

This yields

k≤ 1
2
+

d
ε∆

(Bxlog2+log(exp(−ε)−exp(−nε))) (15)

Thus, setting the threshold as nth2 = d + ∆

2 + d
ε
(Bx log2 +

log(exp(−ε)− exp(−nε))) and implementing the Laplace
mechanism with thresholding ensures the privacy loss less
than nε and also guarantees local DP.

3) Why Thresholding/Resampling Preserve Privacy:
Intuitively, data is kept private in local DP by ensuring
that all data have roughly equal likelihood of producing
a given noisy output (Fig. 1). As long as this condition
is guaranteed, the actual shape of the distribution does
not matter. Indeed, thresholding changes the shape of the
distribution (see Fig. 7), but an intelligent choice of threshold
(nth) guarantees that original data cannot be inferred for
a given noisy output (specifically, nth is chosen such that
worst-case log likelihood ratio is bounded by n × ε). In
Fig. 7, for example, nth is chosen so that both data m and
M have similar probability to report the boundary values.
If an adversary receives the DP output at boundary values,
since the probabilities that the original data is m or M are
similar, the adversary cannot estimate the original data.

Both resampling and thresholding guarantee local DP
implemented in FxP hardware, but they have different energy
efficiency and add different amount of noise to the sensor
data. With resampling, FxP RNG needs to operate multiple
times when noised output is outside the required range, which
increases the average energy consumption. On the other hand,
with thresholding, one noise sample is enough to generate
the noised output, thus having better energy efficiency.
However, as shown in Fig. 6 and Fig. 7, the probability
distributions of the noised output between two techniques
are different, which results in different utility when some
query is applied. Comparison between two methods will be
explained more in Section VI with the experimental results.

C. Budget Control on Fixed-Point Hardware
Budget control is needed to guarantee privacy over

multiple queries as well as to prevent a malicious, or
negligent, application or user from causing an unbounded
loss in privacy.To the best of our knowledge, no previous
work has proposed a budget control algorithm for local DP,
let alone local DP on ULP hardware. One simple way to
implement budget control for local DP is by simply counting
the number of requests and limiting the maximum number of
requests to some value. However, as explained in the previous
section, since the privacy loss when DP is implemented in
FxP hardware is different from the ideal case, the privacy
budget control logic needs to be modified accordingly.

We propose a privacy budget control algorithm that calcu-
lates privacy loss dependent on the noised output value in FxP
hardware implementation. Using the analysis that we have
done in the previous section, it is possible to divide the overall
noised output range into segments with different privacy loss.

Figure 8: Privacy loss as a function of noised output.

For example, take a look at Fig. 8, which shows the normal-
ized privacy loss as a function of noised output values. Since
the output distribution is symmetric, we only show the loss in
the region where the output values are larger than M in Fig. 8.
The dashed lines represent the threshold values corresponding
to each privacy loss. As an example, if the noised output
is within the range (M,M+76] and (M+76,M+90], then
the privacy loss is no more than 1.5ε and 2.0ε , respectively.
Thus, depending on the noised output value, our privacy
budget control algorithm adjusts the privacy loss for each
request adaptively. Algorithm 1 shows an example privacy
budget control algorithm for the case when the noised output
range is divided into seven segments and thresholding is
implemented. If resampling is used, instead of `=ε2 in the
last else statement, we should resample a new noise, update
tmp, and check again at which segment the new tmp falls in.

In Algorithm 1, the control logic stops providing outputs
to the sensor data requests after all the privacy budget
is consumed. One practical way to give outputs to data
requests without more privacy loss after the budget is
used up is caching, which simply returns the cached result
without calculating a new noised output. Since caching
keeps using the old output repeatedly and does not provide
any additional information, there is no more privacy loss
while responding to all the data requests.

D. Hardware versus Software Support for Privacy
Implementing DP mechanism and privacy budget control

in software would allow support on existing microcontrollers
without modification. In spite of this, we propose custom
hardware support for the latency, energy, and security
benefits. We found that to support sensors with resolution up
to 13 bits with privacy parameter ε≥0.1, we needed to use
20-bit fixed-point values. The latency of generating a 20-bit
fixed-point sample from the Laplace distribution and noising
the sensor value in software is 4043 cycles. The latency
of the corresponding software using half precision floating
point values is 1436 cycles. These latencies are without any
budget update computation. Our hardware implementation
noises a sensor value and updates the budget in a single
cycle, although we conservatively assumed a latency of four
cycles to account for one memory write instruction and one
memory read instruction on the MSP430. As a result of these



Input: private sensor data x, noise
n, and a stream of sensor data requests {ri}

Output: noised output y
Initialize the privacy budget B;
Let `=0;
for each data request ri do

if B ¿ 0 then
Let tmp = x+n;
if tmp∈ [m,M] then

`=εRNG;
else if tmp∈ [m−n1,m)∪(M,M+n1] then

`=ε1;
else

if tmp∈ [m−n2,m−n1)∪(M+n1,M+n2] then
`=ε2;

else
`=ε2;

end
y=m−n2 if tmp<m−n2;
y=M+n2 if tmp>M+n2;
y= tmp otherwise;
B=B−`;

else
Halt.

end
end

Algorithm 1: Proposed privacy budget control algorithm
with thresholoding.

latency savings, we see energy benefits of 894× and 318×
compared to the fixed-point and floating-point software
implementations, respectively. These energy benefits also
do not account for our ability to avoid waking up the
microcontroller on every sensor output to perform noising.

In addition to the quantitative benefits, there are also
some qualitative security benefits. Microcontrollers like
TI’s MSP430 lack any memory protection unit, making it
impossible to protect vulnerable regions of memory from
malicious software. Therefore, implementing privacy in
custom hardware is the only way to guarantee that it is not
tampered with. Even on systems with some form of memory
protection, a hardware implementation guarantees that even
completely trusted code cannot manipulate privacy levels.

IV. DP-BOX:
HARDWARE SUPPORT FOR LOCAL DIFFERENTIAL PRIVACY

The above mechanisms (noising, resampling, thresholding,
and budget control) must be implemented such that untrusted
software only has access to noised outputs. This can be ac-
complished in different ways depending on what components
of the system are trusted. In microcontrollers without any
mechanisms for process isolation, no software can be trusted.
This means that privacy parameters (e.g., the ε value and
sensor range d to use for noising, as well as the budget B and
budget replenishment period) must be implemented on hard-
ware. If there is more than one sensor, there also may need

to be a hardware mechanism for sharing the budget between
all sensors since the readings of different sensors could be
combined to compromise privacy [29]. If some software can
be trusted (e.g., a trusted OS or sensor co-processor), then we
can move the aforementioned tasks into software. However, a
hardware implementation may still be needed since software
may have unacceptably high overhead (Section III-D)

For the remainder of the paper, we will consider the case
where some software is trusted. This means that only the
noising needs to be implemented in hardware because of the
unacceptable latency and energy consumed by the software
noising implementation.We present DP-Box, a hardware mod-
ule supporting local differential privacy which could be imple-
mented in either the main processor or the sensor controller
(Fig. 10). The presented hardware is not specific to any type
of sensor and requires no knowledge of the sensors, except for
the sensor range. DP-Box shares some similarities in it’s high-
level structure with the Privacy Preserving Unit (PPU) [30].
However, unlike the PPU work, we present a specific imple-
mentation and evaluate it in different contexts (Section V).

Although budget control can be performed in software,
considering the earlier-mentioned strong reasons we had for
implementing noising/thresholding/sampling in hardware,
we simply embedded the budget control logic into DP-Box
at only 11% additional hardware overhead. We use caching
and budget replenishment to deal with budget overruns.

A. Hardware Interface

In the current implementation, the main processor can
send to the DP-Box the following commands using a 3-bit
command port:
• Start Noising - Used to indicate that a sensor value

x, privacy parameter ε , and sensor range d have been
loaded and noising should proceed. When in the
initialization phase, it is used to indicate that the budget
and replenishment period have been configured and a
transition to the waiting phase should be triggered.

• Set Epsilon - Used to set the privacy level, εin, for the
next sensor reading. Refer to (19) to understand how εin
relates to the ε used for noising. When in the initialization
phase, used to set the budget.

• Set Sensor Value - Used to set the sensor value; the
value that will be noised.

• Set Sensor Range, Upper - Used to set the upper range
of the sensor, which will be used for thresholding and
re-sampling. When in the initialization phase, used to set
the replenishment period.

• Set Sensor Range, Lower - Used to set the lower range
of the sensor, which will be used for thresholding and
re-sampling.

• Set Threshold - Used to toggle the DP-Box between
re-sampling and thresholding; needs to be re-sent to toggle
again.

• Do Nothing - This command is used to hold the DP-Box in
the idle state, if not used, the DP-Box would immediately
begin noising the sensor value again. This command is



included because the sensor value, the sensor range, and
the privacy level do not have to change between noising.

A second port is added for the input value. This port takes
a signed value as input, and is used by every command
above which involves setting a parameter. There are two
output ports, a signed output port for the noised value, and
a single bit output used to indicate that noising is complete.
The ready indicator is necessary because the amount of
time each noising will take, when using resampling, is non-
deterministic. Finally, the DP-Box also takes a clock as input.

B. Generating Noise

A Laplace RNG using inverse CDF is implemented in
hardware, using (17), and samples are computed when
needed. Then the Laplace sample is scaled by s f , which is
defined by (16). Notice that s f depends on the sensor range,
and the privacy parameter ε ; generated noise cannot be used
on a sensor value until all three parameters have been set.
The sensor range is calculated based on the upper and lower
limits, ru and rl respectively. However, the sample from the
Laplace distribution can be calculated immediately, and does
not need to immediately change as s f changes. (17) depends
only on a uniform random number u, where 0<u≤1.

s f =

(
ru−rl

ε

)
(16)

ls=

{
log(2×u) u<0.5
−log(2×(1−u)) u≥0.5

(17)

n=s f×ls (18)
ε =2−εin (19)

By implementing a CORDIC logarithm function and
paying a higher area penalty, the entire logarithm computation
can be completed in a single cycle. The uniform random
number u used in (17) comes from a Tausworthe random
number generator [25]. By using the privacy parameter ε as
(19), as multiplication can be implemented using bit shift, the
latency of calculating the scaling factor is also minimized.

C. Operation

The operation of the proposed hardware (see Fig. 9) can
be described in three phases:

1) Initialization: When the DP-Box is set up during the
system boot process, before the majority of the operating
system has been loaded, it is said to be in the intialization
phase. While in the initialization phase, the budget and
replenishment period are configurable. The integrity of the
budget and replenishment period are easier to guarantee
in the initialization phase considering features such as
secure boot [31] available in today’s systems. Budget and
replenishment period are not allowed to be changed after the
initialization phase. A transition from the initialization phase
into the waiting phase occurs when the main processor sends
Start Noising command, and the DP-Box cannot return to
the initialization phase until the system is power cycled.

2) Waiting for Noise Request: Once initialized, the DP-
Box enters a phase where it waits for the next noise request.
Although the DP-Box is idle, from the point of view of the
main processor, it is not idle internally. While in this phase,
the DP-Box keeps track of the time since the last budget
replenishment, and resets the budget once the appropriate
amount of time has elapsed. The DP-Box also generates a
new noise sample immediately upon entering this stage.

Referring to (16), it becomes clear that a new sample can
be generated as soon as εin, ru, and rl have been configured;
however, we refrain from computing the outcome of (18)
until entering the noising phase. As the upper and lower
ranges of a sensor are likely to both change when one
changes, computing the noise when either changes results
in a wasted computation; increasing energy consumption.

Upon entering the waiting phase, however, a new sample
from the Laplace distribution is immediately computed (ls in
(17)). This allows for noising to occur in a single cycle within
the noising phase. A single cycle, naturally, is the best case;
re-sampling can further affect the latency (see Section VI).

3) Noising: Whereas the waiting phase computed the out-
come of (17), the noising phase computes the output of (18).
This output is then used for re-sampling and thresholding.

If the addition of the generated noise with the sensor value
lies outside the acceptable sensor range, and re-sampling
is enabled, a new sample from the Laplace distribution must
be generated. The latency of the noising mechanism will
be equal to the number of times the mechanism re-samples.
On every clock cycle, a new sample from the Laplace RNG
is generated; the re-sampling logic makes a new comparison
every cycle, and immediately noises and returns the sensor
value once a valid sample is drawn. By having a new sample
ready as soon as the re-sampling logic needs it, the latency
is minimized.

Our implementation of resampling may introduce a timing
channel since the number of resamples depends on the
sensor value, but a straightforward solution to prevent this
is to sample noise multiple times instead of only one and
choose one of them in the required region.

V. METHODOLOGY

We implemented DP-Box in RTL with 20-bit noised output
in 65nm technology node. The DP-Box synthesized for an
operating frequency of 16 MHz using Synopsys Design
Compiler has 10431 gates, critical path length of 58.66 ns,
and power of 158.3 uW. The critical path length is adequate
for ULP systems since a) they run at relatively low frequency
and b) accompanying sensors take 10s of cycles to access [32]
(over a serial I2C bus, for example).When no resampling or
thresholding is needed, noised output is generated in 2 cycles
(one cycle to load the register + one cycle to generate noised
output). Thresholding does not require an additional cycle.
On resampling, every re-sample requires 1 additional cycle.
We generated several other variants of DP-Box to better
understand latency / area tradeoffs. Unsurprisingly, we found
that pipelined variants reduced critical path length at the ex-
pense of area. Similarly, relaxation of timing constraints leads



Figure 9: DP-Box operation

Figure 10: Interface between sensors,
the processor, and the DP-Box. The
sensor values are first read in and
interpreted by the processor, using the
sensor drivers (1); in this figure, the
sensors share a common bus, e.g. I2C.
The interpreted value is then sent to
the DP-Box for noising (2), and is
read out once the DP-Box sets the
’Ready’ line to the processor high (3).

Figure 11: Average latency of the DP-Box, for
every sensor type within a dataset.

to area and power reduction (for example, a variant with 30ns
critical path length had 9621 gates and consumed 252uW).

In order to both evaluate DP-Box’s utility as well as
latency (note that latency is data-dependent for resampling),
we used seven datasets from the UCI Machine Learning
Repository [33], [34], [35], [36], [37], [38], [39]. The
chosen datasets (shown in Table I) are diverse and represent
a variety of sensor and IoT applications. For each entry
in a given dataset, we present it to the DP-Box 500 times
to calculate latency and generate the corresponding noised
output. Note that a different noise may be generated for
each of the 500 samples, so the corresponsing latency and
noised output may be different. We report utility of different
privacy implementations using the metric mean absolute
error for mean, median, variance, and counting queries. We
report error and latency for a dataset averaged over all the
samples in the dataset (number of entries*500).

VI. RESULTS

A. Naive Implementation of Local Differential Privacy on
Fixed-Point Hardware

Figure 12 shows the output histogram of the implemented
DP-box without resampling or thresholding. Two data from
Statlog heart-rate dataset were chosen and fed to the DP-box,
and Fig. 12 represents the histogram of all the outputs gener-
ated by the DP-box with ε =1. As shown in Fig. 12(a), the
DP-box adds noise with a Laplace distribution to the original
data, but in order to verify whether privacy is preserved, we
must check if, for any given outputs, both distributions give
similar probability. As per our analysis in the previous section,
if we zoom in the histogram near the tail region as shown in
Fig. 12(b), it can be easily seen that privacy is not preserved
because two data can be totally distinguishable if the DP
output reports a value that only one data can generate. On the
other hand, the proposed DP-box can successfully preserve
privacy using resampling or thresholding by limiting the DP
output range where both histograms have nonzero counts.

Figure 12: Laplace mechanism output on FxP hardware: (a)
overall histogram and (b) zoomed-in tail region.

B. Utility / Latency Analysis

Table II, III, IV, and V show the mean absolute error
(MAE) result of the statistical mean, median, variance, and
counting queries, respectively. The private data from each
dataset were fed into the implemented DP-box, and the
mean absolute error as a measure of utility for each query
was calculated over noised DP-box output. All of the utility
results are for the privacy setting ε =0.5. We simulated four
different settings for comparison. In the first setting ideal
Laplace distribution was generated for local differential
privacy, and in the second one the Laplace mechanism was
implemented on FxP RNG as a baseline. In the third and



Dataset Entries Min/Max Mean Standard Deviation
Auto-MPG - e.g. model year and MPG [36] 398 9.0/46.6 23.5 7.8
Robot Sensors - e.g. sonar and visual sensors [35]. 6129 0.0/360.0 240.4 137.8
Statlog (Heart) - e.g. Blood Pressure [33]. 270 94/200 131.3 17.8
Human Activity - Wearable sensors [39]. 2650131 -702/533 −36.34 124.04
Localization for Person - Wearable sensors [37]. 165633 -2.54/6.34∗1017 1.58∗1017 2.74∗1017

UJIIndoorLoc - WiFi for Localization [38]. 19937 -7691.3/-7300.9 -7464.3 123.4
Postural Transitions - Wearable sensors [34]. 10929 -10.01/10 0.15 0.52

Table I: Datasets used for utility comparisons.

Ideal Local DP FxP HW Baseline Resampling Thresholding
Dataset MAE LDP? MAE LDP? MAE LDP? MAE LDP?
Auto-MPG 4.3±3.2 (11%) Y 4.2±3.2 N 4.1±3.1 Y 4.2±3.1 Y
Robot Sensors 10.3±7.8 (3%) Y 10.3±7.8 N 9.8±7.5 Y 10.1±7.7 Y
Statlog (Heart) 14.5±11.0 (13%) Y 14.2±10.9 N 13.8±10.6 Y 14.0±10.7 Y
Human Activity 1.70±1.3 (1.3%) Y 1.70±1.3 N 1.66±1.3 Y 1.67±1.3 Y
Localization for Person 0.068±0.05 (1.3%) Y 0.068±0.05 N 0.12±0.07 Y 0.067±0.05 Y
UJIIndoorLoc 6.2±4.7 (1.6%) Y 6.2±4.7 N 6.0±4.6 Y 6.1±4.6 Y
Postural Transitions 0.11±0.09 (1.5%) Y 0.12±0.09 N 0.18±0.12 Y 0.11±0.09 Y

Table II: Mean absolute error for mean query.
Ideal Local DP FxP HW Baseline Resampling Thresholding

Dataset MAE LDP? MAE LDP? MAE LDP? MAE LDP?
Auto-MPG 3.2±2.5 (8.6%) Y 3.3±2.5 N 3.2±2.4 Y 3.3±2.5 Y
Robot Sensors 87±11 (24%) Y 87±11 N 88±11 Y 87±11 Y
Statlog (Heart) 11±8.4 (10%) Y 11±8.5 N 11±8.5 Y 11±8.5 Y
Human Activity 7.3±1.6 (5.1%) Y 7.3±1.7 N 7.1±1.7 Y 7.3±1.7 Y
Localization for Person 0.061±0.05 (1.2%) Y 0.060±0.04 N 0.74±0.0 Y 0.060±0.04 Y
UJIIndoorLoc 39±6.3 (10%) Y 39±6.3 N 40±6.4 Y 39±6.3 Y
Postural Transitions 0.083±0.06 (1.1%) Y 0.085±0.06 N 0.68±0.4 Y 0.085±0.06 Y

Table III: Mean absolute error for median query.
Ideal Local DP FxP HW Baseline Resampling Thresholding

Dataset MAE LDP? MAE LDP? MAE LDP? MAE LDP?
Auto-MPG 1010±770 Y 1020±770 N 1020±760 Y 1020±770 Y
Robot Sensors 2.4E4±1.8E4 Y 2.4E4±1.8E4 N 2.4E4±1.8E4 Y 2.4E4±1.8E4 Y
Statlog (Heart) 2.0E3±1.5E3 Y 2.0E3±1.5E3 N 1.9E3±1.4E3 Y 1.9E3±1.5E3 Y
Human Activity 1600±1200 Y 1600±1200 N 1600±1200 Y 1600±1200 Y
Localization for Person 2.2±1.7 Y 2.2±1.6 N 10.1±2.6 Y 2.2±1.6 Y
UJIIndoorLoc 1.5E4±1.2E4 Y 1.6E4±1.2E4 N 1.6E4±1.2E4 Y 1.6E4±1.2E4 Y
Postural Transitions 5.7±4.3 Y 5.7±4.3 N 15.9±6.8 Y 5.7±4.3 Y

Table IV: Mean absolute error for variance query.
Ideal Local DP FxP HW Baseline Resampling Thresholding

Dataset MAE LDP? MAE LDP? MAE LDP? MAE LDP?
Auto-MPG 39±2.6 (9.9%) Y 40±2.5 N 29±2.7 Y 40±2.5 Y
Robot Sensors 867±15 (14%) Y 868±15 N 867±15 Y 868±15 Y
Statlog (Heart) 25±2.0 (9.2%) Y 25±2.0 N 25±2.0 Y 25±2.0 Y
Human Activity 2370±47 (6.8%) Y 2377±47 N 2389±47 Y 2377±47 Y
Localization for Person 1245±26 (4.3%) Y 1244±26 N 1927±0.0 Y 1244±26 Y
UJIIndoorLoc 744±24 (3.7%) Y 744±24 N 747±23 Y 744±24 Y
Postural Transitions 421±25 (1.8%) Y 421±25 N 429±25 Y 421±25 Y

Table V: Mean absolute error for counting query.

fourth settings, resampling and thresholding were added
on the baseline to guarantee differential privacy. The MAE
values shown in the tables are MAE ± standard deviation
of MAE. Basically the values in the tables show how much
query outputs calculated from DP outputs are off from the
exact query output obtained from raw data. We also showed
the relative error normalized to the full data range.

Although, as shown in the tables, the proposed DP-box
with resampling and thresholding shows similar utility result
for all the queries and datasets as that of ideal local DP
case, there are several things to note in the result. First,
FxP hardware baseline always shows almost identical utility
results with ideal distribution for all the queries and for all
the datasets, which implies that low-power FxP hardware can

perform as well as ideal case. However, all the baselines suffer
from infinite privacy loss as described in the previous section,
and they cannot guarantee DP. On the other hand, the pro-
posed DP-box uses resampling or thresholding to guarantee
DP at all times, but each changes the added noise distribution
differently as shown in Fig. 6 and Fig. 7. Moreover, the noise
distribution becomes different based on the original sensor
data while ideal case and baseline add the same noise distri-
bution (Lap(d/ε)) regardless of sensor data. Thus, the utility
of resampling and thresholding depends on the distribution of
a given dataset. For example, for a dataset that has many ele-
ments near the boundary (minimum or maximum of the sen-
sor data), e.g. the dataset of Localization for Person, the utility
with resampling becomes much worse than ideal case, while



that with thresholding performs similar to the ideal case. On
the other hand, for many datasets having Gaussian-like distri-
bution (many elements located around the mean), resampling
shows better utility. In summary, generally resampling and
thresholding show similar utility to ideal distribution, but their
utility depends highly on the data distribution, so it is required
to consider the underlying data distribution and the applica-
tion carefully before applying local DP to the sensor data.

Figure 11 shows the corresponding latency values (in
cycles). Recall that DP-Box takes 2 cycles when thresholding
is used. Every re-sample adds one cycle. Results show that
resampling never adds more than a cycle, on average (often
much lower). This demonstrates that DP-Box can provide
privacy guarantees at low latency overhead.

Figure 13: Comparison of the estimate accuracy with three
different values for privacy budget.

Figure 14: Simulated mean absolute error of randomized
response implemented in the proposed DP-box.

C. Utility Sensitivity to Dataset Sizes and RNG Resolution

For the queries having global sensitivity scaled with the
number of data such as mean, variance, or standard deviation,
the accuracy of the query on noised data becomes better
as the number of data entries increases. Figure 15 shows
the simulated MAE for the mean query as a function of the
number of data entries. As shown in Fig. 15(a), if the number
of RNG output bits are sufficiently large, then MAE of all
four settings show similar utilities and error approaches zero
as the number of data increases, thus enabling more accurate
aggregate statistics collection while preserving each data
privacy. However, if the number of RNG output bits is small,

Figure 15: Simulated mean absolute error as a function of
number of data: (a) ε = 0.5 and 24 bits of URNG output
and (b) ε =0.5 and 16 bits of URNG output.

then resampling and thresholding set the threshold small
and the resulting noise distribution becomes much different
from the ideal Laplace distribution. Due to this, even if the
number of data increases, MAE does not approach zero and
there exists a lower limit as shown in Fig. 15(b).

D. Effectiveness of Privacy Budget Control

Finally, in order to demonstrate that the proposed privacy
budget control algorithm allows DP-box to guarantee local
privacy even in presence of an adversary, we performed the
following experiment. When an adversary wants to reveal the
original sensor data, the adversary will request sensor data
multiple times to the DP-box until the budget is consumed up
and then take the average of the noised output samples, which
is the maximum likelihood estimate of the original sensor
data. In this setting, we compare three cases (Fig. 13). In one
case, there is no privacy budget so there is no limit on the
number of requests that the adversary can send. In the other
two cases, we set the privacy budget to two different values
for comparison. The DP-box provides the noised outputs with
ε =0.5 in all three cases and, with finite privacy budget, when
all the privacy budget is consumed, the last cached output
is provided as DP output. Figure 13 shows the relationship
between the relative error of the sensor data estimate and
the number of data requests. As can be seen, without privacy
budget control logic in the DP-box, the accuracy of the
estimate keeps improving as the number of requests increases,
and the error will eventually approach zero. On the other hand,
with finite privacy budget, it is possible to limit the accuracy



of the adversary’s estimate, which shows the effectiveness
of the privacy budget control logic in the DP-box.

E. Using DP-Box to Support Randomized Response

The Laplace mechanism is not the only technique that
enables collecting user data while preserving their privacy.
In statistics, randomized response techniques [19] have
been extensively investigated for collecting categorical data.
For example, Google introduced a new mechanism called
RAPPOR [40] based on the randomized response technique
that is performed locally on the client side and that does not
require a trusted third party. The proposed DP-box can be
reconfigured to support the randomized response mechanism
by setting the threshold zero. Thus, it can be used to handle
not only numeric data from sensors but also categorical data.
For example, if we want to keep the gender information (male
or female) of the users in Statlog heart-rate dataset private, the
proposed DP-box with thresholding while setting the thresh-
old zero implements the randomized response technique, i.e.
the data and the noised output are both binary. In order to
measure the utility, the mean absolute error of the population
of male in the dataset was simulated when the randomized
response technique was applied. As shown in Fig. 14, the
query accuracy becomes more accurate as the number of data
increases while preserving the privacy of individual data.

F. Application to Privacy-Preserving Learning Tasks

In the previous section, it was shown that aggregate
data statistics can be obtained while preserving individual
data privacy. In addition to data statistics, local differential
privacy can also be potentially used for many machine
learning applications. For example, classification models
such as logistic regression or support vector machine (SVM)
can be trained while preserving data privacy using DP [41].

Data Size 1000 2000 3000 4000 5000
ε =0.5 69% 72% 76% 77% 82%
ε =1 79% 82% 85% 87% 90%
ε =2 87% 90% 91% 93% 94%

No DP 96% 98% 98% 99% 99%

Table VI: Classification accuracy with different training set
size and privacy parameter.

In order to demonstrate this, we generated a synthetic
dataset for binary classification, which is separable by a
halfspace. Since the data is separable, when we train an SVM
using a training set, the classification accuracy approaches
100% as the training data size becomes larger. Performance
of the SVM trained using true data was compared with those
trained using noised data with different privacy parameters
in Table VI. The final classification accuracy was tested with
identical test data set without noise in all cases. As shown in
Table VI, the SVM can be trained even with noised data, but
the number of data needed to achieve the same performance
becomes larger as the data becomes more private (smaller
ε), which is the cost we pay for preserving privacy.

VII. CONCLUSION

One fundamental challenge for future sensor and IoT
systems is how to draw meaningful information from sensor
data while maintaining the privacy of the data and individuals.
In this work, we explored the feasibility of providing local
differential privacy on ULP systems that power many sensor
and IoT applications. We showed that low resolution and
fixed point nature of ULP implementations prevent privacy
guarantees from being provided due to low quality noising.
We presented techniques, resampling and thresholding, to
overcome this limitation. The techniques, along with a
privacy budget control algorithm, were implemented in
hardware to provide privacy guarantees with high integrity.
We showed that hardware implementation, DP-Box, has low
overhead and provides high utility, while guaranteeing local
differential privacy, for a range of sensor/IoT benchmarks.
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[40] Ú. Erlingsson, V. Pihur, and A. Korolova, “Rappor: Random-
ized aggregatable privacy-preserving ordinal response,” in
Proceedings of the 2014 ACM SIGSAC conference on computer
and communications security, pp. 1054–1067, ACM, 2014.

[41] K. Chaudhuri and D. Hsu, “Sample complexity bounds for
differentially private learning,” in Proceedings of the 24th
Annual Conference on Learning Theory, pp. 155–186, 2011.


