
Reducing Peak Power with a Table-Driven
Adaptive Processor Core

Vasileios Kontorinis
University of California,

San Diego

Amirali Shayan
University of California,

San Diego

Rakesh Kumar
University of Illinois,
Urbana-Champaign

Dean M. Tullsen
University of California,

San Diego

ABSTRACT
The increasing power dissipation of current processors and proces-
sor cores constrains design options, increases packaging and cool-
ing costs, increases power delivery costs, and decreases reliability.
Much research has been focused on decreasing average power dis-
sipation, which most directly addresses cooling costs and reliabil-
ity. However, much less has been done to decrease peak power,
which most directly impacts the processor design, packaging, and
power delivery. This research proposes a new architecture which
provides a significant decrease in peak power with limited perfor-
mance loss. It does this through the use of a highly adaptive pro-
cessor. Many components of the processor can be configured at
different levels, but because they are centrally controlled, the archi-
tecture can guarantee that they are never all configured maximally
at the same time. This paper describes this adaptive processor and
explores mechanisms for transitioning between allowed configu-
rations to maximize performance within a peak power constraint.
Such an architecture can cut peak power by 25% with less than 5%
performance loss; among other advantages, this frees 5.3% of total
core area used for decoupling capacitors.

Categories and Subject Descriptors
C.1.3 [Other Architecture Styles]: Adaptable architectures

General Terms
Design, Experimentation, Performance

Keywords
peak power, adaptive architectures, resource resizing, decoupling
capacitance, voltage variation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’09, December 12–16, 2009, New York, NY, USA.
Copyright 2009 ACM 978-1-60558-798-1/09/12 ...$10.00.

1. INTRODUCTION
The power dissipation of processors has become a first-class con-

cern for both mobile devices as well as high-performance proces-
sors. This issue only becomes more challenging as we continue to
pack more cores and other devices onto the processor die. Recent
research has presented a number of techniques that enable a re-
duction in the average power of a processor or processor core and
reduce the adverse effects of high power on cost and reliability [16,
39, 41, 7]. Much less attention has been devoted to peak power;
however, the peak power dissipation of a processor is also a first-
class concern because it drives the design of the processor, thermal
budgeting for the processor and system, the packaging and cooling
costs, and the power supply costs and efficiency.

Designing robust power delivery for high performance proces-
sors requires expensive power supply and packaging solutions, in-
cluding additional layers and decoupling capacitors embedded in
the packaging [25]. Placing on-chip decoupling capacitors on heav-
ily congested silicon areas to prevent power overshoots is not al-
ways possible [38]. Due to the random and unpredictable nature
of the operational power demand, power distribution networks are
over-designed for a worst case scenario which rarely occurs in nor-
mal operation. Peak power reduction will reduce on chip voltage
variation along with the associated timing uncertainty and potential
signal failures, or it will allow designers to achieve the same voltage
variation with less silicon real estate for decoupling capacitance.

Also, power supply efficiency is proportional to the peak load
current demand of the processor. A power supply that is designed
for the peak power requirement will be less efficient when supply-
ing loads that are substantially under the peak power [42]. That
is, reducing peak power will result in both cheaper power supply
solutions, but also power supplies that consume less power (even if
the delivered average power has not changed) due to the increase in
power supply efficiency.

This paper presents a peak power management technique for cur-
rent and future processors that attempts to guarantee that the peak
power consumption of a processor is far lower than the sum of
all core blocks. We do this via a highly adaptive processor and
a table-driven approach to configuring the processor. In prior ap-
proaches [1, 6, 23, 10], adaptive elements such as caches, queues,
functional units, etc. make local decisions to decrease size based
on local activity. This reduces average power, but does nothing for
peak power. The same worst-case scenario which could theoreti-
cally incur a power drain close to peak power would also cause all
of those elements to be maximally configured at once.

In our table-driven approach, resources are centrally configured.
This central control allows us to guarantee that not all resources are
maximally configured at once. We can choose an arbitrary peak

power design point, and only allow those configurations that do not
exceed that point. Performance loss is minimal because we still
allow any single resource to be maximally configured, just not all
at once. We show that typical applications get close to full perfor-
mance as long as their primary bottleneck resources are fully con-
figured. We find that it is important to be able to adapt dynamically,
because not all applications have the same bottleneck resources.

Thus, the discussed table-driven adaptive architecture requires
configurable components, a table of possible configurations, and a
mechanism for selecting the configuration to run in the next epoch.
This research explores all of these design issues. We find that we
are able to reduce peak power by 25% with only a 5% loss in per-
formance.

This paper is organized as follows. Section 2 discusses related
work. Motivation and mechanisms for reducing peak power dissi-
pation are discussed in Section 3. In Section 4, the adaptive archi-
tecture for reducing peak power is presented. The methodology is
provided in Section 5. Results are shown in Section 6 and Section 7
concludes.

2. RELATED WORK
Albonesi, et al.[2] present a comprehensive study on how to tune

processor resources in order to achieve better energy efficiency
with several hardware and software techniques. We tune similar
resources and in some cases even use the same hardware mecha-
nisms for hardware adaptation. However, the policies for triggering
and evaluating the potential configurations are completely different
when targeting average power.

Most related work in adaptive micro-architectures considers a
small number of configurable parameters. However, Lee et al. [22]
explore the trends and limits of adaptivity in micro-processor de-
sign. They conduct a thorough study of a 240 billion point design
space employing statistical inference techniques and genetic algo-
rithms and provide intuition regarding the benefits of dynamically
adapting processor resources in terms of performance, power, and
efficiency. However, they do not provide run time heuristics that
could be employed in order to dynamically adapt the processor and
they target average power.

Dynamic Thermal Management [4, 15] is a reactive technique
that does not control peak power but does ensure that the power
dissipation does not cause the temperature to exceed a threshold. It
does this by reacting to thermal sensors and decreasing processor
activity when temperature thresholds are exceeded. These tech-
niques can reduce packaging costs related to heat dissipation and
reduce temperature-related failures.

The research of Isci, et al.[16] and Meng, et al.[24] address the
problem of meeting a global power budget while minimizing per-
formance loss. The former employs dynamic voltage and frequency
scaling (DVFS) and uses a trial-and-error method for system per-
formance optimization. The latter uses DVFS and cache adaptation
in combination with analytic models for performance and power
prediction. However, both works treat peak power budget as a
soft limitation that can temporarily be exceeded and rely on power
sensor measurements for reactively tuning the power consumption.
Our architecture is designed to provide peak power guarantees and
in that context does not rely on power sensor measurements.

Sartori and Kumar [32, 33] target peak power on multicores.
They employ DVFS to limit the peak power consumption of each
core in a pro-active way that prevents global power overshoots.
Our work is orthogonal and complementary to Sartori’s work. As-
suming different levels of peak power per core, decentralized peak
power management can be used on top of our core design. This
paper focuses on reducing the peak power of each core, providing

a building block for global multi-core power budgeting solutions.
In this paper, we exploit a number of previously proposed, local

adaptive techniques originally designed to reduce average power in
particular components. These references are given in Section 4.2.

3. THE POWER OF ADAPTATION
Bounding peak power has several key advantages. It can reduce

packaging and cooling costs. It will reduce the cost and increase
the efficiency of the power supply. It may eliminate the need for
thermal sensors in cost-sensitive designs (high performance de-
signs would likely still need them, but perhaps fewer). It allows
more aggressive design in other parts of the processor or system.
It reduces the need for large decoupling capacitors on chip. Power
delivery circuitry does not have to be over-designed.

Reactive dynamic thermal management techniques only provide
some of these advantages. It should also be noted that these tech-
niques are not mutually exclusive, but actually complementary. Our
adaptive processor with peak power guarantees can be a highly ef-
fective part of the response to thermal emergencies, because it al-
lows us to change the peak power reactively. Also, while the re-
active mechanisms do nothing for average power in the absence of
thermal events, our architecture also reduces average power, be-
cause it always has part of the core turned off.

A good general-purpose processor will typically be configured
such that any program that runs on the processor will find it’s most
critical resources sufficiently supplied to enable high throughput —
this is what makes it a good general-purpose processor. However,
it is rare that a single application needs all of those resources. We
find that most applications have only a few bottlenecks, and as long
as those resources are sufficiently supplied, the program can get
nearly full performance.

Figure 1 motivates this research. It shows the result of exper-
iments that provide a fully configured processor (similar to the
MAX_CONF design point described later in this paper), a mini-
mally configured processor where most resources are dramatically
reduced (cut in half), and a series of intermediate processors where
a subset of the resources are at full capacity. The resources that
change include instruction cache, data cache, integer and floating
point instruction queues, reorder-buffer, load-store execution units,
integer and floating point execution units, and renaming registers.

The stacked bar chart in the specific graph depicts (1) the average
speedup over the minimally configured core when one resource is
maximized for each benchmark (2) the average speedup when two
resources are maximized, (3) the average speedup when three re-
sources are maximized, and (4) the fully configured result. When
results are shown for a subset of resources at maximum, we select
those resources that give the highest performance for that particular
benchmark. Two observations jump out of this graph. The first is
that the total difference between the fully configured performance
and the minimally configured (the baseline for the graph) is quite
significant, since the former is approximately 50% faster than the
latter.

Even more significantly, we see that we can cover 65% of the
gap between the two by only providing two out of ten resources at
full capacity, as long as we choose those two resources carefully.
This number rises to more than 85% when we provide three re-
sources at full capacity. This is a powerful result — we can heavily
under-configure 70% of the processor’s components (very roughly
speaking) and give up little performance. The bottleneck resources
vary between applications, so we cannot achieve this same result
with a single static configuration. This is confirmed in Table 1,
where the most important resources per application are presented.
Lee and Brooks [22] note similar variance in bottlenecks, although

Figure 1: Shows the results of several experiments, where po-
tential bottlenecks, or performance constraints, are selectively
removed per experiment, for a variety of benchmarks. The
stacked bar shows the performance gain when the most im-
portant constraint is removed, when two most important con-
straints are removed, when three most important constraints
are removed and when all constraints are removed. Perfor-
mance gain is relative to a minimally configured processor core.

the actual resources are different. These results indicate that we
should be able to achieve close to full performance for any single
application with a configuration whose cost (in peak power, in par-
ticular) is closer to the minimally configured core than it is to the
maximally configured core.

There are two issues that might limit our ability to provide power
guarantees, static leakage and process variation. Static leakage
varies significantly with temperature. So, coupled with thermal
sensors and a mechanism for dealing with thermal events (again,
possibly using this architecture to deal with those events), our de-
sign can still provide a cap for both static and dynamic power. Pro-
cess variation [17] is expected to result in cores that vary from the
expected power behavior, even across a single chip. Again, this
is an opportunity for this architecture, rather than a problem. As-
suming we can detect this variation in testing/verification, we can
either provide the same list of configurations to each core and thus
provide a different guaranteed peak power for each core, or provide
a different list of configurations to each core and thus provide the
same peak power for each core (see Section 4.4). In each case, we
still provide reduced peak power at the level of the processor.

4. AN ADAPTIVE ARCHITECTURE TO
LIMIT PEAK POWER

Current high-performance processors rely on knowledge of ex-
pected, or average, application behavior to design packaging and
thermal sensors to detect when behavior exceeds thermal bounds.
For example, Intel’s current power strategy can be seen in [15]. For
each processor, a set of typical applications are run on the proces-
sor, and a power point is identified that is higher than the average
power dissipation of most applications. This is called the Thermal
Design Power (TDP). System designers are expected to create sys-
tems that can thermally handle this level of power. When power
exceeds this threshold and temperature rises, thermal control cir-
cuitry is activated. Fig 13 in [15] demonstrates clearly that frequent
activation of the thermal control circuit will result in significant per-

Figure 2: The adaptive architecture. The shaded parts are dy-
namically configured for power savings and max performance
while peak power limits are guaranteed.

formance loss for the end user. Such a design does not provide any
peak power guarantees (only peak temperature), hence it is still sus-
ceptible to a power virus [26]. Moreover, TDP cannot be used for
the power supply design, because unlike temperature, power de-
mand can go to its maximum value in any given cycle. Further, the
processor itself, including clock distribution, power delivery cir-
cuitry, decoupling capacitors, and other wiring, must be designed
for the true peak power, not the TDP.

In contrast to reactive approaches, the architecture described here
guarantees that power will never exceed certain thresholds, by en-
suring that in any given cycle a certain portion of the processor core
is not active. It is impossible for the processor to get into a state
where too many resources are being used or in a high power state,
even in the presence of a power virus. The same could be achieved
by just designing a smaller core; however, some applications will
always degrade because of the resources excluded. With an adap-
tive architecture, we give up little performance relative to the fully
configured core, while achieving the peak power of a much smaller
core.

Figure 2 shows our architecture. Most of the architecture is con-
figurable. Control of all configurable pieces is managed centrally.
Reconfigurations happen at very coarse intervals, so there is no la-
tency issue related to central control. The Config ROM contains a
set of configurations that are known not to exceed our peak power
threshold. The Adaptation Manager collects performance counter
information over an epoch, and based on that data possibly selects
a new configuration from the Config ROM for the next epoch.

We assume our CPU is a core of a CMP in 65nm technology. We
focus on a single core (including L1 caches) in this study, assuming
each core limits peak power individually, resulting in a cumulative
reduction in total processor power. The L2 cache could easily be
incorporated, as well. For private L2 caches, it would be part of the
core power management, and would only increase the gains shown
in this paper. For a shared cache, it would need to be part of a
global peak power solution.

Table 2 shows the explored architectural design space, includ-
ing all components we consider configurable. The total number of
configurations grows exponentially with the number of adaptable
components, making prohibitive any hardware implementation that
would need to evaluate a significant fraction of them dynamically.

Media iq fq ialu falu ldst ic dc ipr fpr rob
g721d 2 1 3

mesa-texgen 2 1 3
epic 3 1 2
jpege 1 3 2
Olden iq fq ialu falu ldst ic dc ipr fpr rob

perim_big 3 1 2
mst 3 1 2

treeadd 1 2 3
health 3 1 2

bisort_med 3 2 1
em3d_med 1 2 3
Spec-int iq fq ialu falu ldst ic dc ipr fpr rob

gzip-source 2 3 1
vpr-route 1 2 3
gcc-scilab 3 1 2

mcf 1 2 3
crafty 3 1 2
parser 3 1 2

eon-cook 3 1 2
perlbmk-makerand 3 1 2

gap 2 1 3
vortex-3 3 1 2

bzip2-graphic 3 2 1
twolf 3 1 2

Spec-fp iq fq ialu falu ldst ic dc ipr fpr rob
wupwise 1 3 2

swim 1 2 3
mgrid 1 2 3
applu 1 2 3
mesa 3 1 2
galgel 1 3 2
art-110 3 1 2
equake 1 3 2
facerec 2 1 3
ammp 3 2 1
lucas 2 1 3
fma3d 3 1 2

sixtrack 2 1 3
apsi 3 1 2
Nas iq fq ialu falu ldst ic dc ipr fpr rob

mg.big 3 1 2
ft.big 2 3 1
sp.big 2 1 3
cg.big 3 1 2
bt.big 1 2 3
ep.big 1 3 2

iq: integer instruction queue fq: floating point instruction queue ialu: integer arithm. logic unit falu: floating point arithm. logic unit ldst: load/store unit
ic: instruction L1 cache dc: data L1 cache ipr: integer physical registers fpr: floating point physical registers rob: reorder buffer

Table 1: Presents the important parameters per benchmark. The resource that gives the best performance when maximized is
marked with 1, the resource that gives the best performance when maximized in combination with the first one is marked with 2 and
the resource that gives the best results with the first two is marked with 3.

INT instruction queue 16,32 entries
INT registers 64,128
FP instruction queue 16,32 entries
FP registers 64,128
INT alus 2,4
D cache 1,2,4,8 ways of 4k each
FP alus 1,2,3
I cache 1,2,4,8 ways of 4k each
Load/Store Units 1,2
Reorder Buffer 128,256 entries

Table 2: Design Space

4.1 Filling the Config ROM
We assume that the Config ROM should contain all the reason-

able resource configurations that the core can be in. The first chal-
lenge we encounter is what configurations to put in the ROM. This
section describes our process.

We determine the peak power for every possible configuration
in the design space of Table 2. The total number of configurations
sums up to 6144, which corresponds to the strict product of the
number of all resource configurations. After determining the peak
power threshold, we then eliminate all configurations that exceed
that threshold. In most cases (depending on the threshold), we are
still left with a large number of configurations; however, many are
redundant and unnecessary. We therefore also eliminate all redun-
dant configurations – those that are a strict subset of another in our
list. For example, if configuration B is identical to A, except that A
has 8 cache ways and B has 4, B is eliminated. This step provides
us with a reasonable set of configurations for all threshold levels.
The remaining configurations then go in the Config ROM.

This heuristic makes the implicit assumption that a larger con-
figuration always outperforms a smaller one. We found this to be
almost always true. The most notable exception was crafty which
runs up to 11% faster with configurations that are not the largest.
With more resources, crafty executes further down the wrong path
and as a result, wrong path loads and stores generate useless data

Relative power threshold Number of configurations
0-70 % 132
0-75 % 279
0-80 % 360
0-85 % 285
0-inf % 1

Table 3: Configuration distribution over different peak power
groups

traffic that occupy elements of the memory hierarchy once the pro-
gram returns to the correct path. An architecture that wanted to also
exploit this phenomenon (able to find an optimal architecture even
when it is a strict subset of other available configurations) would
need to have more configurations and likely a more complex al-
gorithm for selecting the next configuration — and the additional
gains would be small.

We consider several possible power thresholds in this research,
although we assume the processor core is configured for a single
threshold (Section 4.4 discusses other assumptions). Specifically
we consider thresholds corresponding to 70%, 75%, 80%, 85% of
the core’s original peak power, as well as no limit which corre-
sponds to the maximally configured core. It is difficult to go much
lower than 70%, because much of the core power goes to things
that we don’t consider configurable. And even the configurable
components are never disabled completely.

Table 3 shows how many configurations would appear in the ta-
ble for each power threshold. The storage cost of the table is quite
low – we require 13 bits per configuration (2 bits for FP ALUs,
Icache and Dcache, 1 bit for the others), so the 75% list would re-
quire 454 bytes.

4.2 Configuration Mechanisms
Each epoch, a new configuration is potentially chosen. Sec-

tion 6.2 describes the actual decision mechanisms used to select the
next configuration. This section is concerned with the mechanics of

switching configurations and adapting individual components once
that selection is made.

Reconfiguration is done carefully to ensure no resources are ever
added until other resources are reduced. For example, if in the
next epoch the Adaptation Manager chooses a configuration with a
larger Icache and a smaller integer queue, we must first wait until
the instruction queue drains out sufficiently and we have success-
fully power gated it, and then we can power up the new Icache
ways.

We attempt to model these delays accurately and conservatively,
and include an additional power-gating delay in order to ensure that
powering down and especially powering up is done in a phased
way, so that induction noise, ground bounce, and rush current [12,
28, 8] will not be an issue. The adaptable components of the pro-
cessor can be placed in two categories. Components such as integer
and load store units maintain no state and can be partially power-
gated immediately after they are signaled by the centralized adap-
tation mechanism. On the other hand, instruction queues, register
files, and data caches must drain state before partial power-gating
is allowed.

The literature contains several approaches for L1 cache power
reduction. Way-prediction [30] will reduce dynamic power dissi-
pation on successful predicts, while Drowsy caches [11] will reduce
leakage power by periodically setting the bitcells in a drowsy, low-
power mode and cache decay [18] will reduce leakage by selec-
tively power-gating cache lines. Unfortunately, none of the above
provide an upper bound on power. We adopt a method similar to the
selective cache-ways work [1] with the important difference that
the contents of a way are flushed and invalidated before the way is
deactivated. Albonesi, et al. keep the contents of the memory cells
valid and use or invalidate those on demand; we flush the dirty en-
tries to the higher cache level and then invalidate the whole way.
Consequently we can always cap the power activity of the specific
cache since deactivated parts of the cache array can not dissipate
any leakage or dynamic power. Our approach negatively impacts
performance in the short term by increasing the stress on the mem-
ory subsystem. However, when the interval between adaptations is
sufficiently large, the performance drop is insignificant.

For instruction queue partitioning, we assume a circuit mecha-
nism similar to [6]. Integer and floating point instruction queues
are both clustered in two 16-entry parts. Before disabling a clus-
ter we ensure that all the instructions have issued by using a simple
NOR of all active bits of the entries in the cluster. No compaction is
assumed. Once the adaptation mechanism decides to shut down an
instruction queue cluster, register renaming is throttled. Once the
cluster issues all remaining instructions in that partition, we can
begin power gating and resume renaming.

The register files and the reorder buffer of our architecture fol-
lows the resizing principles described in [10]. We segment the bit-
lines of the RAM components of the various buffers but at a much
coarser granularity. Therefore we have a lower and upper cluster
of the register file, and a lower and upper cluster of the reorder
buffer. When we partially deactivate the structure we always dis-
able the higher part and only after ensuring that the specific entries
are not active. For that we again throttle register renaming during
the adaptation period until the desired partition becomes idle. Un-
like the queues, which always empty out eventually, register file
parts may never empty without some intervention – in this case, by
injecting some additional instructions to be renamed [10].

In [14] the authors provide details on ALU power gating together
with several techniques to minimize performance loss once power
saving techniques are applied. We assume similar mechanisms but
instead use our centralized control.

Component Power-up Delay (cyc) Power-down Delay (cyc)
Dcache 651 163
Icache 335 84
Int inst queue 127 32
FP inst queue 127 32
Int Alus 198 50
FP Alus 375 94
Int reg file 277 69
FP reg file 277 69
rob 42 11

Table 4: Assumed delays to powergate components

Component Min(cyc) Average(cyc) Max(cyc)
Dcache 163 384 1085
Int inst. queue 32 93 1725
FP inst queue 32 65 1741
Int reg file 69 101 3557
FP reg file 69 106 1108
ROB 11 114 2254

Table 5: Delays to disable components holding state

During the adaptation process handshake signals are exchanged
between the Adaptation Manager that decides the next configura-
tion of the processor from those stored in the Config ROM, and dif-
ferent adaptable components. Initially the Adaptation Manager will
notify one or more components with a request for power down. The
component will then take any necessary action (e.g., flush cache
lines, etc.) to ensure safe partial deactivation as described above.
After that completes, the unit signals the Adaptation Manager. At
that point, the manager can initiate the power gating of the compo-
nent, which will take some known number of cycles. Only at the
end of that period can the Adaptation Manager initiate the power-
up of those resources that will grow. Communication costs are
minimal and happen very infrequently.

In Table 4 the delays to turn on and off each component are
shown. According to [31], 200 ns suffice to power-up 1.2 million
gates in 90nm technology. Ignoring the speed increase that should
come with 65nm technology, and assuming linear scaling based on
gate counts, our largest adaptive structure should be able to power
up in a conservative 350 ns. Hence, powering-up the Dcache ways
in the modeled core takes 350ns, and the delay for other compo-
nents is faster, depending on each component’s area. A 4:1 ratio
was assumed between the delay to power up and power down a
component, since powering down causes practically no inductive
noise effect and should be much faster.

Table 5 summarizes the minimum, average, and maximum de-
lays observed for powering down structures that hold state. This
delay includes the assumed powergating delay and the time to free
all occupied entries, but does not include communication costs with
the Adaptation Manager.

While we have modeled all of these delays carefully, we show in
Section 6.4 that performance is highly insensitive to these delays.

4.3 Implementation overhead
The configuration selection mechanisms we describe in Section

6.2 vary in their complexity – the computation is not complex, but
in some cases the set of alternative configurations considered is
large. Fortunately, the config ROM and the adaptation manager –
the main additions of our technique – are accessed infrequently and
are not part of the critical path.

Leveraging this fact, we can evaluate each configuration in the
Config ROM consecutively, minimizing the hardware resources re-
quired for the Adaptation Manager. Assuming the most complex
heuristic proposed in the results section, we need to estimate the
"closeness vector" and the "weight vector". For the former we need

to perform 10 2-bit subtractions (as many as the parameters we con-
sider in each configuration) and for the latter we need to perform 10
23-bit comparisons between measured and threshold values (23 is
log of the max interval used between adaptations – 8M cycles). As-
suming that these subtractions and comparisons can be done con-
secutively as well, all we need is a small ALU capable of doing
narrow width subtractions, a few additional state bits, and muxes.
Our circuit analysis with stardard cells in 65nm technology for this
additional computational hardware indicates that it should add well
under 1% to the total peak power and less than 0.5% of area. The
Config ROM was conservatively modeled as RAM, using CACTI,
and introduced less than 0.1% peak power overhead and 0.75% area
overhead. In terms of average power the mechanism cost can be ig-
nored since this small specialized engine is activated infrequently.

Given the tolerance of delays associated with this computation,
and the frequency at which we adapt, we could even relegate the
decision of selecting the best configuration to software. Even if the
decision is made in software, we would propose still hardwiring
the configurations in the hardware table to ensure that malicious
software could never force an illegal configuration.

Design verification and testing will increase for the considered
highly-adaptive core compared to a core with fixed-size resources.
However, since we only permit a subset of all the possible core
configurations testing will be simplified compared to an adaptive
processor where configuration decisions are decoupled – such as
the proposed architectures for average power reduction.

4.4 Static or Dynamic Filling of Config ROM
There is nothing preventing a single architecture from having

multiple ROMs, or modifying the ROM contents over time (obvi-
ously in the latter case a reprogrammable ROM, or RAM, would be
required), switching between them either at verification/test time,
bootup time, or even runtime. This raises a number of new and
promising potential uses of this technology.

(1) We could use it in conjunction with Dynamic Thermal Man-
agement – thermal events trigger the core to go into a lower peak
power envelope. We could even have different power envelopes for
other events – plugged in/not plugged in, low battery, etc.

(2) We could account for thermal heterogeneity in the proces-
sor (e.g., cores in the center tend to run hot, those on the edges
cooler [9]) by applying a different peak power envelope to differ-
ent cores.

(3) Similarly, we could counteract the effects of process variation
by filling the ROM at verification time with a set of configurations
which match the exact thermal and power characteristics of that
individual core.

(4) Our technique can be coupled with fault tolerance. If a hard
error is detected on an adaptable component, then the configura-
tions that incorporate that specific partition can be disabled, as part
of the core’s overall fault isolation solution. In this way, we natu-
rally redirect the power from faulty components to those that can
use them.

(5) We could maintain an overall processor peak power envelope,
but use it judiciously to maximize global throughput. We allow
a core that can use the extra power for more performance to go
to P + ∆ while another is forced to P − ∆. Our architecture,
applied to a CMP, already provides a mechanism for transforming
a homogeneous design into a heterogeneous architecture (each core
configured separately to make the best use of its peak power limit).
This optimization further enhances that ability, as we now have the
ability to set the peak power limit of each core according to the
needs of the individual application.

Several of these are the subject of ongoing or future research.

Processor Core
Peak Power Value(W) 36 28.57

Average Value(W) 20.87 15.90

Table 6: Absolute Power Values for the modeled processor

Cores 1 I cache 32k, 8 way
Fetch width 4 I cache miss penalty 8 cyc
INT instruction queue 32 entries D cache 32k, 8 way
FP instruction queue 32 entries D cache miss penalty 8 cyc
Reorder Buffer entries 256 shared L2 cache 2 MB, 4 way
FP registers 128 L2 miss penalty 40 cyc
INT registers 128 L3 4 MB, 4 way
Cache line size 64 bytes L3 miss penalty 315 cyc
Frequency 1.83GHz Vdd 1.2V

Table 7: Architectural Specification

5. METHODOLOGY
In order to evaluate different adaptation policies that optimize

performance for given power budgets, we added support for dy-
namic adaptation to the SMTSIM simulator [37], integrated with
the Wattch power models[5]. Wattch was modified so that the un-
derlying CACTI [36] models have more updated circuit parameters
and a reorder buffer is added to the power modeling.

5.1 Power Modeling
Wattch was developed for relative, activity-factor based power

measurements and was originally validated against processors built
in early 2000. Hence, it does not capture absolute power con-
sumption for modern architectures but approximates well the rela-
tive power trends when the on-chip resources dynamically change.
Wattch lacks a leakage power model and does not consider different
circuit design styles or power reduction techniques. Our method-
ology is similar to the one in [19] and addresses the above issues.
In that work, they apply linear scaling to the output of Wattch for a
particular technology, so that it matches published values for a real
processor at two points – peak power and average power. If we as-
sume Wattch results reflect relative power changes accurately, this
methodology should produce accurate absolute power results for
the calibrated processor. Below we present the data used for the
scaling. For this methodology, we need real processor peak power
and average power, and the peak and average power from Wattch.

We get the Wattch peak power by maximizing all activity fac-
tors. We get Wattch typical power simply by running a number
of benchmarks through it. For the target processor, we obtained
the TDP value from the datasheets of Intel Core Solo at 65nm and
assumed the latter as 75% of the peak power [15]. We also get
the average power from [15] – in fact, this paper gives us a range
of power values over a workload set which overlaps heavily with
ours, allowing us to validate our model even more strongly.

This is only for dynamic power. We also need to add leakage
power estimates. Specifically, we assume leakage power to ac-
count for 40% of overall typical power and approximately 28% of
the peak power [13] for our 65 nm design. Since leakage scales
with area, we break down the assumed value according to area ra-
tios given by [21]. The L2 area is estimated as 70% of the core area
from an Intel Core Solo die photo. The leakage values are addition-
ally scaled linearly when a component is reconfigured dynamically,
assuming that we always powergate deconfigured resources.

Table 6 gives the absolute peak and average power for the mod-
eled processor as well as the corresponding core (processor exclud-
ing L2). Figure 3 presents the breakdown of peak and average
power to different components. For the estimation of the aver-
age power we averaged the power consumption across our set of

Figure 3: The breakdown to core components for the peak and
average power. The power reported is comprised of dynamic
and leakage power.

benchmarks when running on the maximally configured processor.
We find that 50% of the total peak power and more than 40% of
the average power is being used by our configurable resources, and
the remaining power is used by non-configurable components. Be-
cause none of our resources are configurable to a size of zero, of
course, only a portion of that power can be eliminated.

Table 7 gives the characteristics of our baseline architecture.

5.2 Benchmarks
In order to explore the benefits of adaptability we use the whole

SPEC2000 benchmark suite and a selection (picked randomly) of
Media, NAS and Olden benchmarks. Adaptive processors inher-
ently are more effective in matching the varying needs of different
programs. Hence, we use 42 benchmarks in total to expose all sorts
of different execution behaviors. We use the Simpoint tool [35] to
estimate the proper fast forward distance for up to 4 representative
simpoints per benchmark and then we simulate 50M instructions
at each simpoint. Multi-simpoint simulations were used to better
capture intra-thread phase changes.

6. RESULTS
In this section, we first explore the potential for exploiting adap-

tivity for peak power reduction by modeling ideal static and dy-
namic configuration selection. We then examine real heuristics for
navigating the configuration space dynamically.

6.1 Dynamic adaptation vs Static tuning
This section explores the potential of adaptivity to reduce peak

power, while still limiting the performance hit introduced from the
resource restrictions. Figures 4 through 6 present results for several
oracle configuration policies (at each peak power threshold).

The policies simulated include the static worst per simpoint
(WORST_PER_SIMPOINT), the static best per benchmark
(BEST_PER_BENCH), and the static best per simpoint
(BEST_PER_SIMPOINT). For those, the best (or worst) static con-
figuration is identified for each application individually over the en-
tire simulation interval (recall that our configuration trimming al-
gorithm significantly restricts how bad “worst” can be). The fourth
column (BEST_STATIC) corresponds to the best core configura-
tion in the specific peak power chunk across all benchmarks. The
fifth column (IDEAL_ADAPT) demonstrates the performance of a
core than changes configurations dynamically and always chooses

the best configuration for each interval of 1M instructions. Thus,
the fourth bar represents potential performance from just designing
the best possible non-configurable core within the peak power con-
straint. The second bar represents the potential from adaptivity to
exploit inter-application diversity. The difference between the sec-
ond and fourth bars represents the potential due to intra-application
diversity. All the results were normalized to the BEST_STATIC,
because this represents the best possible non-adaptive processor
you could build within this peak power constraint, and constitutes
our baseline. The last column (MAX_CONF) represents the fully
configured core, which does not share the same peak power con-
straint as the rest of the core options in this graph.

Several conclusions come out of these figures. As expected the
more limited the peak power budget the bigger the gains from adap-
tivity. For the lowest peak power budget an ideal adaptive core
would perform on average 16% better than a core with fixed-size
resources and tuned for best results (BEST_STATIC), while for the
highest peak power budget the benefits are much smaller.

We also see that even with a tight peak power budget, we are
able to get very close to the same performance as the full core. This
confirms that most applications require just a few key resources.

But the bottleneck resources vary, and the best static core can-
not give each of these applications what it needs most, while the
adaptive core can.

Also, a larger selection of benchmarks, such as are used in real
processor design, would almost certainly result in a larger gap be-
tween the compromise (best static) architecture and the adaptive
architecture.

As we relax the peak power budget (for example, at 75%), we
see a somewhat smaller gain from adaptivity over the static config-
uration, but we are able to nearly replicate the performance of the
full core. At 80% of peak power the differences are smaller, but
still noticeable. For an 85% threshold (results not shown), the best
static core is pretty competitive with our adaptive core.

The use of multiple simpoints and the between-simpoint adap-
tation makes a significant difference in only gcc and bzip2. This
indicates that overall we gain much more from inter-thread diver-
sity than from intra-thread diversity.

Also notice in these results that we see the aforementioned be-
havior for crafty, and to a lesser extent for vpr — that they achieve
higher results with a configuration smaller than the largest. Again,
this is a result of being able to more aggressively pursue wrong
branch paths with more resources, and is in general an anomalous
result. Interestingly, this effect enables, at the higher peak thresh-
olds (80% and 85%), the ideal adaptive technique to actually out-
perform the maximally configured core (by a small amount).

One measure of core design “goodness” is the ratio of average
power to peak power. A low ratio implies an architecture that
requires the system (including the processor design, the cooling,
packaging, the power supply, etc.) be over-provisioned for the de-
livered performance. A high ratio, then, implies a more efficient
design. Figure 7 presents the average power and peak power for
the IDEAL_ADAPT architecture.

This architecture, then, shows two very positive trends, it reduces
both average power and the ratio of peak to average power at the
same time. It should be noted, in fact, that we have moved the
ratio of peak to average power to a point that is more typical of
an in-order processor core than the out-of-order core we are simu-
lating [20]. Again, this enables the use of a more efficient power
supply (better targeted at the average power), saving wall power.

Figure 4: The performance of six configuration policies with a peak power constraint of 70% of the maximum configuration. The
best static configuration is: iqs:32 fqs:32 ialu:2 falu:1 ldst:1 ics:16 dcs:16 ipr:64 fpr:64 rob:256

Figure 5: The performance of six configuration policies with a peak power constraint of 75% of the maximum configuration. The
best static configuration is: iqs:32 fqs:32 ialu:4 falu:1 ldst:1 ics:16 dcs:16 ipr:64 fpr:64 rob:128

6.2 Realistic Adaptive Techniques
In order for the adaptation manager to approach the potential we

have seen for our adaptive processor, it needs to constantly navigate
the list of potential configurations in the config ROM, hopefully
staying close to the optimal configuration at all times.

Specifically, the configuration manager has to address three is-
sues: When should a reconfiguration be triggered? We should be
attempting to reconfigure at least often enough to capture major
program phase changes, as well as transitions between applications
(context switches). Which configuration from the ROM is the most
appropriate to run next? The ROM stores more than 100 configu-
rations for each power chunk. Being able to distinguish the config-
urations that are more likely to perform better becomes critical. Fi-
nally, how do we evaluate the configuration chosen? For the latter
we need a notion of whether performance has improved or declined
as a result of a reconfiguration decision.

We examine several policies for effectively navigating the con-
figuration space. Each is described as a 3-tuple, corresponding to
the questions in the previous paragraph. Thus, the naming con-
vention is < adaptation triggering mechanism >_< configuration
selection method >_< evaluation method >. We show results for
the following policies:

INTV_RANDOM_NONE: After a predetermined interval of cy-
cles a different configuration is chosen randomly. There is no feed-
back mechanism or evaluation of the configurations. This is a sim-
ple policy and it is not expected to perform well. But it is a useful

result in that it essentially gives us the "expected" behavior of the
set of all the potentially good static architectures.

INTV_SCORE_NONE: After a predetermined interval of cycles,
a different configuration is chosen according to a score-based tech-
nique. Statistics are kept for conflict events of each resource that is
dynamically configured. A conflict occurs when a resource is be-
ing contended for. Specifically, we maintain instruction queue con-
flicts (an instruction cannot enter the instruction queue because it is
full), floating point queue conflicts, integer register conflicts (an in-
struction cannot be renamed because there are no available renam-
ing registers), floating point register conflicts, integer ALU con-
flicts, floating point ALU conflicts, reorder buffer conflicts, Icache
misses, and Dcache misses. To have a notion of which resource
is most required we maintain the ratio of conflicts per cycle (we
also tried conflicts per instruction, with no significant performance
difference observed). A vector is formed indicating the compo-
nents that exceeded thresholds we set based on experimentation
(weight_vector). Then, another vector is formed which describes
how closely a configuration under consideration relates to the cur-
rent configuration (closeness_vector) – this vector can have both
positive and negative values. The closeness vector is simply the
result of subtracting the two entries (the configuration under con-
sideration from the current configuration) from the config ROM.
For example if we consider 1,2,4,8 ways caches and the current
configuration has 2 way-enabled cache while the configuration un-
der consideration has 4, the element of the closeness vector for that

Figure 6: The performance of six configuration policies with a peak power constraint of 80% of the maximum configuration. The
best static configuration is: iqs:32 fqs:32 ialu:4 falu:1 ldst:1 ics:16 dcs:16 ipr:128 fpr:64 rob:256

Figure 7: The average and peak power of our idealized adap-
tive core. Above the bars is shown the ratio of peak to average
power.

cache would be 1. If instead of 4 there were 8 ways the closeness
element would be 2. For a configuration with a 1-way cache, the
closeness element would be -1. The total score for each config-
uration is found by multiplying the two vectors and summing the
elements, as illustrated in Table 8.

Once all the scores are estimated, the configuration with the
highest score is selected. There are frequent ties, and so the se-
lection is then made randomly. This policy makes a more educated
configuration selection by favoring configurations that increase the
resources with conflicts. However, it still lacks a feedback mecha-
nism to evaluate the configuration selected.

INTV_SCORE_SAMPLE: This is the same policy as the previous
one with the addition of sampling as a feedback mechanism. Ev-
ery interval of cycles a series of potential configurations are chosen
based on the scoring system and the weights given by the execu-
tion of the previous configuration. The top n are chosen for sam-
pling, again with random selection breaking ties. Experimentally,
we found n=5 to work well. After all configurations are run for a
sampling interval, the best IPC wins (the previous configuration’s
execution IPC is also considered) and that configuration runs un-
til the next reconfiguration interval. The reconfiguration interval is
set to keep a 1:10 ratio between the sampling time and the execu-
tion time. To prevent any transitional or cold start effects there is a
warm up period before data is collected during a sampling interval.

EVDRIV_SCORE_SAMPLE: This policy does not consider adap-

tation periodically. Instead adaptations are considered only when
there is evidence of a change in application behavior (event-driven).
In particular, if we detect that over the previous interval, the mea-
sured IPC, or the cache behavior (misses per cycle), changed by
a relative margin of 30%, then we initiate a reconfiguration eval-
uation. The frequency of adaptations is limited by an upper (8M
cycles) and lower bound (2M cycles).

INTVAD_SCORE_SAMPLE: With this policy we adapt the inter-
val between reconfiguration sampling based on how useful recon-
figuration is. When we sample and find a better configuration than
the previous, we cut the time to the next reconfiguration in half.
When we fail to find a better configuration, we double the interval
(adaptive interval). In this way, we search quickly when we are far
from optimal, and minimize sampling overhead when we are near
it. Again there is a minimum bound (2M cycles) and a maximum
bound (8M cycles) for the interval.

In figure 8 we present the speedup over the best static configu-
ration achieved with the different adaptive policies applied to the
lowest peak power bound. We experimented with interval values
ranging from 0.5M to 10M. The policies with fixed interval pro-
duced the best results with an interval of 2M cycles, while the poli-
cies with variable interval perform best with lower bound 2M and
upper 8M cycles. We observe that randomly selecting a configura-
tion from the ROM performs significantly worse than the best static
configuration. This is the difference between the average static
configuration and the optimal static configuration. With the ad-
dition of score to make more educated selections the performance
is on average equivalent to the best static configuration. The evalu-
ation that comes with sampling gives a major boost to performance
since bad configurations are avoided. Finally, the dynamic interval
techniques provide some additional gains – the adaptive interval
doing better than the event-driven (phase detection) mechanism.
The problem with the phase detection heuristic is that in its current
form, when it encounters an abrupt phase change, it gets just one
chance to find a good configuration before it settles in for a long
interval, and adapts very slowly after that.

We see that with our best dynamic technique, we cover almost
10% out of the potential 15% speedup of the oracle adaptive tech-
nique over the best static. Overall with the best realistic adaptive
approach we perform 10% worse than the maximally configured
processor. Thus we have shown that we can reduce the peak power
of a processor core by 30%, only sacrificing 10% in performance.
The best static configuration with the same peak power would have
a 20% performance hit. At 75% peak power, the performance loss
is less than 5%.

iq size fq size ialus falus ldst units iregs fregs Icache ways Dcache ways rob
Current config 32 16 2 1 2 128 128 4 1 128

Considered config 16 16 4 3 1 64 128 1 2 128
Closeness vector -1 0 1 2 -1 -1 0 -2 1 0

Weight vector 1 0 0 1 0 1 0 0 1 1
Results (cl_vec * wei_vec) -1 0 0 2 0 -1 0 0 1 0
Total score (sum of results) 1

Table 8: Example of configuration score estimation

Figure 8: The performance of different adaptive policies with re-
spect to the best static configuration

Figure 9: Comparison of full and reduced
ROM for different peak power constraints

Relative power threshold Number of configurations
0-70 % 71
0-75 % 97
0-80 % 119
0-85 % 116
0-inf % 1

Table 9: Configuration distribution of the reduced set over dif-
ferent peak power groups

6.3 Reducing ROM configurations
There are two costs to having a large number of configurations in

the config ROM. One is storage, although that cost is relatively low.
The second cost is the difficulty in finding the optimal configura-
tion. We can further pare down the configurations experimentally,
separating those often found to be worthwhile from those rarely
selected. For this experiment, we do this using the oracle adaptive
experiments presented in Section 6.1. We eliminate from the config
ROM only those configurations never selected as the best configu-
ration for even a single interval for any benchmark. This is a fairly
conservative filter. Even still, we cut the number of configurations
by more than half (see Table 9). Note that there is some danger to
this optimization, if the actual workload is not well represented by
the benchmark set used to pare down the configurations.

Figure 9 presents the best adaptive policy (INTVAD_SCORE_
SAMPLE) with the full ROM and the reduced ROM for different
peak power thresholds. As expected, reducing the number of con-
figurations improves our performance, inching us even closer to the
ideal result. At 75% with the inclusive set of configurations we per-
form 6.4% worse than the maximally configured core, while with

the reduced set we do 4.8% worse. At 80%, our realistic adaptation
policy with the reduced set of configurations is only 2.5% worse
than MAX_CONF. In many scenarios, trading 5% performance for
a 25% reduction in peak power, or 2.5% for a 20% reduction, and
the cost and real power savings that go with it, represents a huge
win.

It is worth noting that DVFS, proposed for peak power budget-
ing, sees more than double the performance hit when achieving
similar peak power savings (Table 1 in [24]).

6.4 Delay sensitivity analysis
This section examines the impact of the assumed reconfigura-

tion latency on our results. The adaptive policy used was INT-
VAD_SCORE_SAMPLE. To change the duration of adaptation we
multiplied all the parameters of Table 4 with different factors as
demonstrated in figure 10. The "No delay" bar corresponds to
the unrealistic scenario where component powergating happens in-
stantly – note that adaptation still is not instant since we wait for in-
struction queues to drain or dirty L1 entries to be flushed to the L2.
For any reasonable assumption about these delays, the impact on
performance is negligible. Undoubtedly, the adaptive interval op-
timization contributes to this, since on average the interval lengths
were larger than the rest of the techniques.

6.5 Quantifying the benefits of Peak Power re-
duction

In this section, we analyze the impact of the peak power re-
duction on silicon area required for on-chip decoupling capacitors
and the voltage variation. The voltage variation in sub-65nm tech-
nologies should be kept below 5% of the nominal supply voltage

Experiment 1 Experiment 2
Relative power threshold On-chip decap (% of Core Area) Max. Voltage Variation (% VDD)
0-70 % 9% 4.48%
0-75 % 9.7% 4.80%
0-80 % 10.5% 5.12%
0-85 % 11.5% 5.44%
0-inf % 15% 6.48%

Table 10: Peak power reduction impact on the voltage variation and the on-chip decoupling capacitor area

Figure 10: Sensitivity analysis of INTVAD_SCORE_SAMPLE
to the delay of adaptation
VDD [3]. We model a distributed power distribution network with
power and ground network RLCG parasitics based on [34, 27] for
the total processor die area of 26.25mm2 as shown in Figure 11.
The core current demand is modeled based on the peak current de-
mand – peak power divided by the supply voltage – and the clock
frequency and is distributed as time-variant current sources over
the power and ground mesh. The distributed current sources are
modeled as triangular waveforms with the clock frequency period
(1

fclk=1.83GHz
) and the rise and fall time of 10 × fclk [38, 40].

Figure 11: Distributed power distribution network model.
To calculate the amount of necessary decoupling capacitances

required to maintain a voltage fluctuation within 5%, we use the
following first order approximation: P = CT · VDD

2
· f · p0−1

where P is the total chip peak power consumption, VDD denotes
the supply voltage, f is the clock frequency, CT is the on-chip de-
coupling capacitance, and p0−1 is the probability that a 0−1 transi-
tion occurs [34]. CT includes the intrinsic decoupling capacitance
which is usually small and the intentional decoupling capacitance
which we add and for which we report area numbers [29].

We find that peak power reduction saves significant die area for
the intentional on-chip decoupling capacitors and minimizes the
voltage drop at the same time. We perform the transient analysis
based on [34] to find the minimum on-chip decoupling capaci-
tors which are required based on 65-nm thin oxide technology from

the initial estimation. Table 10 illustrates the experimental data for
the on-chip decoupling capacitor estimation. We ran two different
analyses. Experiment 1 illustrates that to maintain voltage varia-
tion below 5% of the nominal VDD , the reduction of peak power
to 75% of the original value reduces the amount of required on-
chip decoupling capacitor area by 5.3% (of total core area). Expe-
riment 2 demonstrates that if we instead maintain the same amount
of on-chip decoupling capacitors (in this test case 150nF) the volt-
age variation is suppressed significantly when we reduce the peak
power. For the 75% threshold, the variation is reduced by 26%.

7. CONCLUSION
This paper describes an adaptive processor that uses table-driven

reconfiguration to place a cap on peak core power dissipation. By
only allowing configurations specified in this table, the core is en-
sured to always operate below a given power threshold. While it
is impossible to configure all resources at full capacity, each appli-
cation can find a configuration that provides the resources it most
needs at full capacity. In this way, we minimize the performance
loss while providing significant peak power savings. This tech-
nique is shown to enable a 25% reduction in peak power with less
than a 5% performance cost. Additionally, it can outperform the
best static design at the same peak power threshold by 9%. The
Peak power reduction translates to 5.3% less total silicon for de-
coupling capacitance or a 26% reduction in voltage variation for
the same decoupling capacitance. Furthermore, the design of the
chip voltage supply becomes cheaper and more efficient.

8. ACKNOWLEDGMENTS
The authors would like to thank the anonmymous reviewers for

many useful suggestions, and Jeffery Brown for his help and advice
with the simulator. This research was supported in part by NSF
Grant CCF-0702349 and grants from Intel Corporation.

9. REFERENCES
[1] D. H. Albonesi. Selective cache-ways: On demand cache

resource allocation. In Proc. of MICRO, 1999.
[2] D. H. Albonesi, R. Balasubramonian, S. G. Dropsho,

S. Dwarkadas, E. G. Friedman, M. C. Huang, V. Kursun,
G. Magklis, M. L. Scott, G. Semeraro, P. Bose,
A. Buyuktosunoglu, P. W. Cook, and S. E. Schuster.
Dynamically tuning processor resources with adaptive
processing. IEEE Computer, 2003.

[3] B. Amelifard and M. Pedram. Optimal selection of voltage
regulator modules in a power delivery network. In Proc. of
DAC, 2007.

[4] D. Brooks and M. Martonosi. Dynamic thermal management
for high-performance microprocessors. In Proc. of HPCA,
2001.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In Proc. of ISCA, 2000.

[6] A. Buyuktosunoglu, D. Albonesi, S. Schuster, D. Brooks,
P. Bose, and P. Cook. A circuit level implementation of an
adaptive issue queue for power-aware microprocessors. In
Proc. of GLSVLSI, 2001.

[7] A. Buyuktosunoglu, T. Karkhanis, D. Albonesi, and P. Bose.
Energy efficient co-adaptive instruction fetch and issue. In
Proc. of ISCA, 2003.

[8] Y.-S. Chang, S. K. Gupta, and M. A. Breuer. Analysis of
ground bounce in deep sub-micron circuits. In Proc. of VTS,
1997.

[9] A. K. Coskun, R. Strong, D. M. Tullsen, and
T. Simunic Rosing. Evaluating the impact of job scheduling
and power management on processor lifetime for chip
multiprocessors. In Proc. of SIGMETRICS, 2009.

[10] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. H.
Albonesi, S. Dwarkadas, G. Semeraro, G. Magklis, and
M. L. Scott. Integrating adaptive on-chip storage structures
for reduced dynamic power. Technical report, Univ. of
Rochester, 2002.

[11] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy caches: simple techniques for reducing leakage
power. In Proc. of ISCA, 2002.

[12] E. Grochowski, D. Ayers, and V. Tiwari. Microarchitectural
di/dt control. In Proc. of IEEE Design and Test, 2003.

[13] A. Grove. IEDM 2002 Keynote Luncheon Speech.
[14] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban,

H. Jacobson, and P. Bose. Microarchitectural techniques for
power gating of execution units. In Proc. of ISLPED, 2004.

[15] Intel Corp. Intel Pentium 4 Processor in the 423-pin Package
Thermal Design Guidelines, Nov. 2000.

[16] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and
M. Martonosi. An analysis of efficient multi-core global
power management policies: Maximizing performance for a
given power budget. In Proc. of MICRO, 2006.

[17] ITRS. International Technology Roadmap for
Semiconductors 2003, http://public.itrs.net.

[18] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay:
exploiting generational behavior to reduce cache leakage
power. In Proc. of ISCA, 2001.

[19] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen. Single-ISA Heterogeneous Multi-core
Architectures: The Potential for Processor Power Reduction.
In Proc. of MICRO, 2003.

[20] R. Kumar, D. Tullsen, N. Jouppi, and P. Ranganathan.
Heterogeneous chip multiprocessing. IEEE Computer, 2005.

[21] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core architecture
optimization for heterogeneous chip multiprocessors. In
Proc. of PACT, 2006.

[22] B. C. Lee and D. Brooks. Efficiency trends and limits from
comprehensive microarchitectural adaptivity. In Proc. of
ASPLOS, 2008.

[23] R. Maro, Y. Bai, and R. I. Bahar. Dynamically reconfiguring
processor resources to reduce power consumption in
high-performance processors. In Proc. of PACS, 2001.

[24] K. Meng, R. Joseph, R. P. Dick, and L. Shang.
Multi-optimization power management for chip
multiprocessors. In Proc. of PACT, 2008.

[25] P. Muthana, A. Engin, M. Swaminathan, R. Tummala,
V. Sundaram, B. Wiedenman, D. Amey, K. Dietz, and
S. Banerji. Design, modeling, and characterization of
embedded capacitor networks for core decoupling in the

package. Trans. on Advanced Packaging, 2007.
[26] K. Najeeb, V. V. R. Konda, S. K. S. Hari, V. Kamakoti, and

V. M. Vedula. Power virus generation using behavioral
models of circuits. In Proc. of VTS, 2007.

[27] V. Pandit and W. H. Ryu. Multi-ghz modeling and
characterization of on-chip power delivery network. In Proc.
of EPEP, Oct. 2008.

[28] M. D. Pant, P. Pant, D. S. Wills, and V. Tiwari. Inductive
noise reduction at the architectural level. In Proc. of VLSID,
2000.

[29] M. Popovich, A. V. Mezhiba, and E. G. Friedman. Power
Distribution Networks with On-Chip Decoupling Capacitors.
Springer, 2008.

[30] M. D. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi, and
K. Roy. Reducing set-associative cache energy via
way-prediction and selective direct-mapping. In Proc. of
MICRO, 2001.

[31] P. Royannez, H. Mair, F. Dahan, M. Wagner, M. Streeter,
L. Bouetel, J. Blasquez, H. Clasen, G. Semino, J. Dong,
D. Scott, B. Pitts, C. Raibaut, and U. Ko. 90nm low leakage
soc design techniques for wireless applications. In Proc. of
ISSCC, 2005.

[32] J. Sartori and R. Kumar. Distributed peak power management
for many-core architectures. In Proc. of DATE, Mar. 2009.

[33] J. Sartori and R. Kumar. Three scalable approaches to
improving many-core throughput for a given peak power
budget. In Proc. of hiPC, Dec. 2009.

[34] A. Shayan, X. Hu, H. Peng, W. Yu, W. Zhang, C.-K. Cheng,
M. Popovich, X. Chen, L. Chua-Eaon, and X. Kong. Parallel
flow to analyze the impact of the voltage regulator model in
nanoscale power distribution network. In Proc. of ISQED,
2009.

[35] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior.
In Proc. of ASPLOS, Oct. 2002.

[36] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P.Jouppi.
Tech report CACTI 5.1. Technical report, HPL, 2008.

[37] D. Tullsen. Simulation and modeling of a simultaneous
multithreading processor. In Proc. of CMG Conference,
1996.

[38] G. Unikowsky. Allocating decoupling capacitors to reduce
simultaneous switching noise on chips. MIT PhD Thesis,
2004.

[39] S. Yaldiz, A. Demir, S. Tasiran, Y. Leblebici, and P. Ienne.
Characterizing and Exploiting Task-Load Variability and
Correlation for Energy Management in Multi-Core Systems.
In Proc. of Workshop ESTIMedia, 2005.

[40] H. Yu, C. Chu, and L. He. Off-chip decoupling capacitor
allocation for chip package co-design. In Proc. of DAC, 2007.

[41] Y. Zhang, X. S. Hu, and D. Z. Chen. Task scheduling and
voltage selection for energy minimization. In Proc. of DAC,
2002.

[42] X. Zhou, P.-L. Wong, P. Xu, F. Lee, and A. Huang.
Investigation of candidate VRM topologies for future
microprocessors. Trans. on Power Electronics, Nov 2000.

