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Abstract—A large number of application domains have require-
ments on cost, conformity, and non-toxicity that silicon-based
computing systems cannot meet, but that may be met by printed
electronics. For several of these domains, a typical computational
task to be performed is classification. In this work, we explore
the hardware cost of inference engines for popular classification
algorithms (Multi-Layer Perceptrons, Support Vector Machines
(SVMs), Logistic Regression, Random Forests and Binary De-
cision Trees) in EGT and CNT-TFT printed technologies and
determine that Decision Trees and SVMs provide a good balance
between accuracy and cost. We evaluate conventional Decision
Tree and SVM architectures in these technologies and conclude
that their area and power overhead must be reduced. We
explore, through SPICE and gate-level hardware simulations and
multiple working prototypes, several classifier architectures that
exploit the unique cost and implementation tradeoffs in printed
technologies - a) Bespoke printed classifers that are customized
to a model generated for a given application using specific
training datasets, b) Lookup-based printed classifiers where key
hardware computations are replaced by lookup tables, and c)
Analog printed classifiers where some classifier components are
replaced by their analog equivalents. Our evaluations show that
bespoke implementation of EGT printed Decision Trees has
48.9× lower area (average) and 75.6× lower power (average)
than their conventional equivalents; corresponding benefits for
bespoke SVMs are 12.8× and 12.7× respectively. Lookup-based
Decision Trees outperform their non-lookup bespoke equivalents
by 38% and 70%; lookup-based SVMs are better by 8% and
0.6%. Analog printed Decision Trees provide 437× area and 27×
power benefits over digital bespoke counterparts; analog SVMs
yield 490× area and 12× power improvements. Our results and
prototypes demonstrate feasibility of fabricating and deploying
battery and self-powered printed classifiers in the application
domains of interest.

Index Terms—printed electronics, machine learning

I. INTRODUCTION

While the impact of computing appears to be ubiquitous in
today’s society and economy, a large number of important do-
mains are still minimally touched. Consider the over 10-trillion
dollar fast-moving consumer goods (FMCG) market [47],
for example. Disposables such as packaged foods, beverages,
toiletries, over-the-counter drugs, and other consumables are
sold largely without any embedded computing devices that
could help with identification and tracking [69] (is this today’s
pill?), quality monitoring [14] (is this milk bad?), brand
authentication [56] (is this apple Golden Delicious?), or
interactivity [72] (is my beer at the temperature I like?).

The primary reason why FMCG domains (as well as
domains such as low-end healthcare (e.g., bandages and wound
dressings), agriculture [13], and environment [3]) have not
seen much penetration of computing is the cost limitation of
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today’s silicon-based computing systems. Silicon-based systems
continue to cost much more than the cost requirements of these
domains. For example, item-level tagging of several FMCG
products - consider apples, milk, soda bottles, and bandages
- must have sub-cent costs [64] (i.e., equivalent to the cost
of a barcode [64]) that silicon-based systems cannot meet
due to the high manufacturing, testing, and assembly costs
of such systems [46]; even the cheapest microcontrollers and
RFIDs cost several cents [64]. Many of the above domains
also have stretchability, porosity, non-toxicity, and flexibility
requirements that silicon-based systems cannot meet [41].

Low voltage printed electronics [27] has emerged as promis-
ing technology to target such application domains. Printing
technologies often rely on maskless [76], portable [44], and
additive [27] manufacturing methods which can greatly reduce
costs and production timelines [28]. Such technologies also
lead to devices that are conformable [36] and non-toxic [49].
Furthermore, recently developed printed technologies (e.g.,
EGT [26]) are low-voltage, allowing them to be battery-
powered or potentially self-powered [5] when used in context
of the above applications.

In this paper, we focus on printed machine learning (ML)
classifiers. A large number of printed applications may need
to make classification decisions in the field. For example, a
printed smart wound dressing [48] may be used to determine
if a wound has healed. A printed in-situ sensor [72] may
determine if a packaged food item has expired. A printed
pulse oximeter [45] may determine when the oxygenation or
pulse rate levels are abnormal. Prior work has not explored the
design space of printed machine learning classifier architectures
for any learning algorithm. This is not surprising since such
exploration relies on design tools which require process design
kits (PDKs) for printed technologies. Such PDKs have just
started becoming available [66], [80] as the technologies have
begun to mature, making developing such PDKs worthwhile.

In this research, we perform an exploration of low-cost
classifier architectures for printed technologies (Fig. 1) using
recently developed EGT and CNT-TFT PDKs [10]. Our
exploration yields several interesting observations. First, since
printed technologies have orders of magnitude larger feature
sizes than state-of-the-art CMOS, the circuits designed and
fabricated in printed technologies have significantly worse area
and power characteristics than silicon counterparts (Table I).
Therefore, simple classification algorithms and models that
can be implemented at low gate count are strongly favored
(e.g., Decision Trees and Support Vectors Machines (SVMs)).
Second, since both non-recurring engineering (NRE) costs and
per unit-area fabrication costs in printed technology are low
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[31], highly custom bespoke classifiers - classifier architectures
that are customized to a model generated for a given application
using specific training datasets (Section IV) are enabled; such
degree of customization is mostly infeasible in silicon due to
high NRE and fabrication costs. Third, unique implementation
tradeoffs in printed technologies encourage new optimizations.
For example, low ROM overhead in EGT printed technology
compared to logic enables lookup-based implementation of
classifiers (Section V). Similarly, the high absolute area and
power overhead of digital printed architectures and the lower
relative overhead of analog elements (e.g., resistors, diodes, and
capacitors) compared to digital elements in printed technologies
versus silicon encourage analog implementation of classifiers
(Section VI). This paper makes the following contributions:

• We perform the first exploration of different classification
algorithms in terms of accuracy and potential cost for two
printed technologies (EGT [26] and CNT-TFT [65]). Our
results show that simple classification algorithms such as
Decision Trees and SVMs provide a good balance in terms
of accuracy and potential hardware costs compared to
more complex algorithms such as multi-layer perceptrons
and logistic regression.

• We evaluate conventional Decision Tree and SVM archi-
tectures in printed technologies for a set of simple sensor-
based machine learning applications. Our evaluations show
that conventional classifier architectures have high area
and power overheads which must be reduced.

• We develop and evaluate bespoke printed classifier ar-
chitectures. We show that EGT-bespoke Decision Tree
implementations have 4× lower delay, 75× lower power,
and 48× lower area (on average) than their conventional
general-purpose counterparts. Corresponding benefits for
bespoke SVM implementations are 1.4×, 12.7×, and
12.8× respectively. To the best of our knowledge, this is
the first quantification of the benefits of bespoke classifiers
in printed technology. We also fabricated a working EGT
prototype of a bespoke Decision Tree. This is the first
prototype of a Decision Tree in a printed technology.

• We develop and evaluate lookup-based printed classifier
architectures, where certain logic functions (e.g., com-
parators in Decision Trees and MAC units in SVMs) are
replaced by lookup tables. Our results show that lookup-
based EGT Decision Trees improve the area of bespoke
counterparts by 1.93× and power by 1.65×, with 50%
delay overhead (on average). Lookup-based SVMs, see in
the best case, a 40% reduction in delay with 8% and 1%
improvement in area and power respectively. To the best
of our knowledge, these are the first lookup table-based
implementations of machine learning classifiers for printed
technology. We also fabricated a working prototype of an
EGT ROM that can be used to implement lookup-based
printed classifiers.

• We develop and evaluate analog printed classifiers1 where

1Some may prefer to call these classifiers mixed-signal or semi-analog since
digital elements are still present

Fig. 1: An overview of this research: we explore the space of
conventional and printing-specific classifier architectures through
hardware simulations and prototypes. DT s: Serial Decision Tree,
DT p: parallel Decision Tree, SV M: Support Vector Machine, MLP:
Multilayer Perceptron, LR: Logistic Regression, RF : Random Forests

TABLE I: PPA analysis of common ML operations in PPDK, CNT-
TFT and TSMC40nm. D,A,P: Delay, Area, Power

EGT CNT-TFT TSMC-40nm

Components D
msec

A
cm2

P
mW

D
usec

A
mm2

P
mW

D
nsec

A
um2

P
mW

Comparator 11.2 0.15 0.61 9.5 0.21 8.32 0.23 94 0.14
MAC 27 1.12 4.12 16.14 1.4 57 0.57 255 0.51
Relu 2.54 0.03 0.14 1.44 0.35 10 0.1 67 0.46

data representation and computation (comparisons for
Decision Trees and MACs for SVMs) are implemented
using analog logic. Our results show that EGT analog
Decision Tree classifiers outperform their digital bespoke
counterparts by 437× and 27× for area and power
respectively and are 1.63× slower. Corresponding area
and power benefits for analog SVM architectures are 490×
and 1212× respectively; analog SVMs are 1.36× slower
than bespoke counterparts. These are the first printed
implementations of analog Decision Trees and SVMs
and quantification of their benefits. We also fabricate and
evaluate a prototype analog signal Decision Tree - this is
the first prototype of an analog Decision Tree in a printed
technology.

II. BACKGROUND AND RELATED WORK

Printed electronics is an emerging technology which holds
promise to enable flexible [29], large-area [30], and ultra-low-
cost computing systems [31] through the use of printing-based
fabrication techniques such as screen [5], [37], roll-to-roll [21],
[39], and inkjet [21], [25], [27], [73] printing. Inkjet printing,
for example, has attracted a lot of attention, as it allows for
contact-less printing on a wide range of carrier materials such
as flexible substrates due to its mask-less fabrication process,
where jetting of droplets is controlled by a CAD software, thus
enabling digital printing [20].

Some printing methods rely purely on additive manufacturing
steps, while others are based on both additive and subtractive
processes. Comparable to subtractive silicon-based processes,
subtractive printing processes include fabrication steps which
involve the development of photoresists and subsequent etching.
Due to this, the subtractive processes are relatively expensive
compared to additive processes, as they demand expensive
equipment and infrastructure [16]. In contrast, a fully additive



TABLE II: Accuracy and computation requirements of different classification algorithms; models generated by scikit-learn. DT-1/2/4/8:
Decision Tree Classifiers with depth 1/2/4/8, RF-2/4/8: Random Forest classifiers with 4/8/16 estimators with max depth of each tree is up to
8, MLP-1: Multi-Layer Perceptron with 1 hidden layer and up to 5 hidden nodes, MLP-3: Multi-Layer Perceptron with 3 hidden layers up to
5 nodes per hidden layer, A: Accuracy on test data, #C: Number of comparisons, #M: Number of MAC operations.

DT-1 DT-2 DT-4 DT-8 RF-2 RF-4 RF-8 MLP-1 MLP-3 LR SVM-C SVM-R
A #C A #C A #C A #C A #C A #C A #C A #M A #M A #M #C A #M #C A #M #C

Arrhythmia 0.56 1 0.58 3 0.62 12 0.60 46 0.52 98 0.61 166 0.65 351 0.62 1380 0.58 1430 0.63 2893 11 0.64 14k 55 0.25 263 12
Cardio 0.79 1 0.79 3 0.87 13 0.94 47 0.91 104 0.92 225 0.94 479 0.90 110 0.91 160 0.91 57 3 0.90 57 3 0.84 19 4
GasID 0.37 1 0.49 3 0.67 14 0.90 97 0.94 239 0.95 471 0.96 899 0.98 665 0.98 715 0.91 762 6 0.99 1.9k 15 0.99 127 7
HAR 0.57 1 0.82 2 0.90 4 0.99 4 0.99 146 0.99 334 0.99 812 0.99 85 0.99 69 0.94 60 5 0.99 120 10 0.90 12 6
Pendigits 0.19 1 0.32 3 0.66 15 0.92 122 0.94 266 0.96 570 0.97 1147 0.94 130 0.91 180 0.92 160 10 0.98 720 45 0.19 16 11
RedWine 0.44 1 0.47 3 0.53 14 0.51 112 0.57 169 0.56 361 0.61 745 0.57 85 0.60 19 0.56 66 6 0.55 165 15 0.57 11 7
WhiteWine 0.45 1 0.48 3 0.51 15 0.54 160 0.55 277 0.56 569 0.59 1122 0.56 90 0.55 19 0.54 66 6 0.51 165 15 0.51 11 7

printing environment requires only a simple deposition machine,
where functional inks are printed layer-wise on substrates
to realize transistors, passive components (such as resistors
and capacitors), and interconnects. This simplification of the
manufacturing chain is, however, associated with a reduction of
performance (inkjet-printed EGTs versus subtractively printed
CNT-TFTs, for example [10]), mainly due to larger features
sizes attributed to low resolution and, hence, low-cost printing.

Irrespective of the deployed fabrication process, performance
and transistor-densities of silicon-based electronics can never
be reached, due to the large feature sizes in printed electronics,
which are in the range of µms, compared to nms in silicon. As a
consequence, printed electronics is considered a complementary
technology to silicon-based circuits, with the potential to sup-
port application domains, the so-called “large-area electronics”,
with stringent requirements in terms of cost, conformity, or
non-toxicity (Section I). Please see [28] for a much more
detailed overview of printed electronics and its benefits and
applications.

Work on supporting machine learning in printed technolo-
gies has been limited. Weller et al [77] develop an EGT
neuron implementation that can be used to support both
multiply-accumulate (MAC) operation as well as non-linear
activation functions. Douthwaite et al [23] propose a time
domain encoding-based implementation of a MAC engine for
flexible substrates. Ling et al [43] discuss the possibility of
implementing spiking neural networks using EGTs. Ozer et
al [55] suggest that benefits may be possible from bespoke
classifiers and describe an automated methodology to generate
such classifiers; no quantification was performed. In contrast to
previous work, we explore and compare several conventional
and printing-specific classifier architectures in multiple low-
voltage printed technologies using hardware simulations and
prototypes.

Our exploration critically requires the use of printed PDKs.
Several PDKs have been developed for printed technolo-
gies [66], [80]. We choose to perform our exploration using
EGT and CNT-TFT technologies since a) these technologies
can operate at low voltage and can, therefore, be potentially
used to build battery or self-powered classification systems,
and b) the corresponding PDKs and standard cell libraries
are open source [10] making it easier for us to perform our
exploration.

III. CHOOSING CLASSIFICATION

ALGORITHM FOR PRINTED APPLICATIONS

The first question we attempt to answer is - what clas-
sification algorithms can be feasibly supported in printed
technologies? The choice of the classification algorithm to
support in printed hardware for a given application depends
both on the characteristics of the application (which determine
the accuracy for a given algorithm) and the costs of the
implementation of the algorithm in hardware (e.g., power, area,
and latency). We studied five different classification algorithms
- Decision Trees [59] (DTs), Random Forests [12] (RFs), Multi-
Layer Perceptrons [62] (MLPs), Logistic Regression (LR), and
Support Vector Machines (SVMs) [11] - and evaluated them
in terms of accuracy and potential hardware cost using scikit-
learn over seven datasets belonging to simple machine learning
applications that consume at least one sensor input and have low
precision, duty cycle, and sample rate requirements. Printed [8],
[19], flexible [15], wearable [52], [63], [67], [78], or RFID [6],
[17], [53], [68], [74] sensors already exist for these applications
making them suitable for our study. Six datasets (Arrhythmia
[34], cardiotocography [9], pendigits [4], GasID [32], and
RedWine/WhiteWine [18]) were chosen from the UCI Machine
learning repository [24]; HAR (Human activity recognition)
dataset was taken from [7]. Arrhythmia [34] classifies heart
rhythms based on ECG sensor outputs. Cardiotocography
(cardio) [9] classifies cardiotocograms based on several sensed
values and their histograms. Pendigits [4] classifies hand-written
numbers based on pen-tip pressure and location. GasID [32]
uses chemical sensors to classify gasses. Red and White
Wine [18] classify wines by their quality using pH and metal
trace sensors. The HAR (Human Activity Recognition) dataset
was taken from [7] and classifies a person’s activity (walking,
standing, sitting, etc) based on accelorometer outputs.

We performed pre-processing for each application dataset to
remove all the non-sensor (categorical) features. Each dataset
is then divided (70/30) into a training dataset and a test dataset.
In the training set, all input features are normalized to have
zero mean and unit variance. During training, hyperparameters
are selected using scikit-learn’s built-in hyperparameter search
functionality (RandomizedSearchCV) with 5-fold cross
validation and 100 iterations. MLPs, SVMs, and logistic
regression are trained until convergence with the default
tolerance. Once training is over, we generate classification
accuracy (in Table II) on the test dataset.

Table II, in conjunction with Table I, allows us to understand
the accuracy-cost tradeoffs between different classification



a) b) c)
Fig. 2: a): Conventional architectures for Serial Trees, b) Maximally Parallel Trees, and c) Regression-based SVMs. a1,a2,a3, ...,an are
class-labels.

algorithms in printed and silicon technologies. We present
results for Decision Trees with depth 1, 2, 4 and 8, Random
Forests with 2, 4, and 8 trees, and MLPs with 1 and 3
hidden layers and 5 nodes per hidden layer. We evaluated both
classification and regression versions of SVMs (SVM-C and
SVM-R respectively). SVM-C is using the one-vs-one multi-
class classification strategy, so there is one binary classifier
for every pair of class labels. For SVM-R, the class labels
(integers) are treated as real values used to train a single SVM
regressor. During inference, the output (which is a real value)
is mapped to the nearest class label.

To estimate the potential hardware cost of each classifier
in printed and silicon technologies, we observe that the
computation in each classifier (during classification) is domi-
nated by two operations: comparisons and two-input multiply-
accumulates (MACs). The potential hardware cost of each
classifier, therefore, depends on the number of these operations
in the trained model and their cost of hardware implementation
(Table II). We count the number of each operation in the
trained model of each classifier generated by scikit-learn.
To calculate the implementation cost of an operation, we
implemented each operation natively in RTL and synthesized
the designs with Synopsys Design Compiler using EGT, CNT-
TFT, and 40nm TSMC libraries. We observe (Table I) that an
EGT MAC requires 7.5× more area, 6.8× more power, and
has 2.4× higher latency relative to a comparison. Therefore,
conventional classifiers with large number of MACs (e.g.,
MLPs, SVMs, and logistic regression) will have high overall
hardware overhead. We also observe that hardware overheads
in printed technologies are orders of magnitude higher than
the silicon implementation. This means that a classification
algorithm whose hardware implementation exceeds a certain
number of MAC units and comparators may be infeasible for
printed applications, even as its silicon implementation may
have acceptable overheads.

Results show that the Decision Trees are clearly the lowest
cost classifiers. MLPs, LR and SVM-C (SVM classification)
algorithms have high hardware cost (19 to almost 2000 MAC
units) making the corresponding area and power overheads (21
to 2250 cm2 and 0.078 to 8.2 W in EGT) likely prohibitive
for most printed applications (even as the corresponding area

and power overheads in silicon - 0.004 to 0.51 mm2 and 0.009
to 1 W - are most likely acceptable for most applications).
RFs also have high hardware cost for high accuracy goals (52
to 168 cm2 and 0.21 to 0.68 W in EGT for RF-8) due to a
large number of comparators used. However, the cost can be
scaled down at the expense of accuracy by reducing the depth
of each tree in the forest. SVM-Rs have higher hardware cost
than most Decision Trees, but still have much lower cost than
other classifiers.

Overall, our results show that simple classification algorithms
such as Decision Trees (for all applications) and SVM-Rs (for
some applications) provide a good balance in terms of accuracy
and estimated costs. In fact, for HAR, Decision Trees have the
highest accuracy tied with more complex classifiers. SVM-Rs
performs better than Decision Trees for applications such as
wine quality where there are simple linear relationships between
input features and class labels. More complex algorithms such
as MLP, and LR have higher accuracy on average, but have
high overhead in printed technologies. Random Forests may
allow tunable accuracy-cost tradeoffs. However, Decision Trees
are the kernel of a Random Forest ensemble; any optimization
for Decision Trees is a natural optimization for Random Forests.
As a result, we restrict our detailed evaluations in subsequent
sections to Decision Trees and SVM-Rs.
A. Conventional Classifier Architectures in
Printed Technologies

Decision Tree and SVM-R classifiers have low cost while
still providing reasonable accuracy. For this reason, we choose
to study these classifiers in greater depth. We implemented
conventional decision tree and SVM-R classifiers in EGT and
CNT-TFT to understand how well these architectures may meet
the requirements of printed applications and where the cost
bottlenecks and opportunities for improvement are.

1) Decision Trees: First, we consider decision trees. Com-
plexity of the decision tree classification algorithm can be
scaled by changing the number of levels in the tree and the
number of comparisons at each level. For deeper trees, there
exists a meaningful parallelism versus work-efficiency tradeoff.
If comparisons are evaluated in serial, only the comparisons
leading to the correct classification are required. However, we
might want to evaluate comparisons at multiple levels in parallel



TABLE III: Conventional Serial Trees, L: Logic, M: Memory

EGT CNT-TFT TSMC40nm
Trees Delay Area Power Gate Delay Area Power Gate Delay Area Power Gate

ms mm2 mW Count µs mm2 mW Count ns µm2 mW Count

L M L M L M L M L M L M L M L M L M

DT-1 18.1 2.04 19.2 0.85 1.57 0.08 59 10.2 604 0.24 0.9 27 0.16 65 0.29 100 62 0.15 0.125 62 54
DT-2 44.4 4.08 38 2 4.92 0.17 115 20 1208 0.42 2.1 94 0.33 115 0.7 150 87 0.47 0.26 124 74
DT-4 86.8 8.16 182 9.6 28 0.35 626 52 2416 2.2 9.7 472 0.66 742 1.64 250 472 2.1 1.04 249 350
DT-8 181 16.3 196 204 71 0.71 638 130 4832 2.49 207.4 968 1.34 765 3.4 450 495 34 2.48 528 353

TABLE IV: Conventional Maximally Parallel Trees, D,A,P: Delay,
Area, Power

EGT CNT-TFT TSMC40nm
Trees D A P Gate D A P Gate D A P Gate

ms cm2 mW # µs mm2 W # ns µm2 mW #

DT-1 29 1.55 13.1 257 16 2.2 183 288 0.47 386 0.4 129
DT-2 37 4.2 30.6 790 43 5.9 0.18 864 0.61 1071 0.75 492
DT-4 50 20 118 4.1k 52 28.9 0.7 5.1k 0.92 4036 1.99 1.8k
DT-8 59 213 1027 49k 89 300 3.25 62k 1.25 39035 12 19k

to reduce latency. The more levels we evaluate in parallel, the
more wasteful comparisons we will have to do.

We evaluate two implementations of decision trees in
hardware, which correspond to the two ends of the parallelism
versus wasted-work tradeoff space. The first implementation
performs comparisons fully serially, so we call this the serial
decision tree. The corresponding architecture diagram is shown
in Fig. 2. In the serial implementation, there is a single
comparator. There are two ROM memories, one for thresholds
that the input features are compared to, and the other for
classifications. During inference, the working node in the tree
is stored in a shift register. The shift register is initialized with
the value 1, and, in each subsequent cycle, the result of the
current comparison is stored in the least significant bit of the
shift register. Since the shift register works for any tree with a
given depth, it is capable of indexing nodes that do not exist for
a given (possibly unbalanced) tree. Therefore, we must either
transform the value of the shift register before indexing into
threshold memory or size the threshold memory assuming a
full tree. We chose the latter. Once the initial set bit in the shift
register reaches the most significant bit, we know inference is
complete and use the stored index to look up the classification
in the classification ROM.

For each decision tree depth, we generated RTL for the
corresponding decision tree performing comparisons of 8-bit
values. For the number of input features, we used the number of
nodes in the tree or the maximum number of input features in
any of our applications, whichever is smaller. For our modeling,
we use standard cell libraries and ROM models from [10]. ROM
models for TSMC-40nm are derived from [79]. Table III shows
the latency, area, and power of logic and memory (ROM) in
the decision trees for different technologies.

The results show that inference latency (logic delay + ROM
delay) is high, especially for deep trees (almost 200ms for
depth-8 trees!). Area and power overheads are also excessive.
For example, the power requirement of EGT DT-8 exceeds
the peak power produced by several printed and hybrid
harvesters [40], [42] (Fig. 3). Similarly, EGT DT-4 and DT-
8 cannot be powered by Blue Spark 10 mAh (2 mA peak

current) and 30 mAh (2 mA peak current) printed batteries [71];
Molex [2] 90 mAh (20 mA peak current) printed batteries have
three times bigger area footprint. Analogously, high area of
the serial trees has direct impact on yield, bill of materials
(BOM), and fabrication throughput.

Note that DT-4 and DT-8 have similar gate count. For
trees in Table III, the number of unique features is equal
to min

{
2d −1,14

}
where d is the depth of the tree and 14 is

the average of the number of unique features in the datasets
used. For both DT-4 and DT-8, the number of unique features
is 14, which fixes the size of input multiplexers. The small
difference in the gate counts of DT-4 and DT-8 is due to the
increase in the width of the shift register, which is linear with
the depth of the tree.

Our second implementation performs comparisons fully in
parallel, so we call it a maximally parallel decision tree. The
architecture of maximally parallel tree is shown in Fig. 2. For
every node in the decision tree, there is a comparator and two
registers. One register holds a threshold and the other holds an
input feature. The result of all the comparisons is then used to
select the classification using a multiplexer.

The delay, area, and power of the maximally parallel
trees are shown in Table IV. These trees are, on average,
1.32× faster than the serial counterparts. However, area and
power overheads are excessive when compared to serial
implementations (20× bigger and consume 8.07× more power
for EGT implementation). In fact, only a depth-1 EGT parallel
tree can be powered either by Blue Spark or Molex printed
batteries (Fig. 3); the deeper trees consume too much power to
be powered by any printed battery or a printed energy harvester.

2) Support Vector Machines: We also implemented conven-
tional inference architecture for SVM-Rs. The implementation
is fully parallel. I.e., every MAC operation is assigned to its
own MAC unit in hardware. The input features and coefficients
(chosen equal in number to the max input features in all the
datasets - 263, for arrhythmia) are stored in registers. The
hardware multipliers, equal in number to the number of input
features, multiply the input features with the corresponding
trained coefficient. All the multiplication results are then added
and mapped to the nearest class using comparators and class
encoder as shown in Fig. 2.

Table V shows the delay, area and power analysis of 4,
8, 12 and 16 bit (width of input features and coefficient)
SVMs implemented in EGT, CNT-TFT and TSMC40nm. Our
evaluation shows that even the smallest SVM (4-bit) has an
area of 85cm2 and a power of 288mW. In fact, no conventional
SVM can be powered by a printed battery or energy harvester
(Fig. 3).



Fig. 3: Conventional Parallel (PDT) and Serial (SDT) EGT
Decision Trees of depths 1, 2, 4, and 8 placed into sets based on
which sources can power them: Molex [2], and Blue Spark [70],
[71] printed batteries. Printed and hybrid harvesters [40], [42]
cannot power any conventional EGT classifier architecture.

TABLE V: Conventional SVMs: 4,8,12 and 16 bits.
EGT CNT-TFT TSMC40nm

D A P Gates D A P Gates D A P Gates
msec cm2 mW # msec cm2 W # nsec mm2 mW #

SVM-4 85.6 85.3 288 32k 0.042 1.02 2.48 38k 1.47 0.019 6.1 9.98k
SVM-8 125 439 1424 170k 0.07 5.39 15 202k 2.07 0.09 25 46k
SVM-12 142 860 2632 252k 0.06 10 27 309k 2.4 0.19 46 95k
SVM-16 151 1445 4294 403k 0.07 17 45 624k 2.6 0.32 76 153k

Overall, our evaluations show that conventional classifier
architectures have high delay, area, and power overheads when
implemented in printed technologies. Subsequent sections
present printing-specific architectures that are capable of
reducing these overheads for several applications by multiple
orders of magnitude.

IV. BESPOKE PRINTED CLASSIFIERS

Since both NRE costs and per unit-area fabrication costs
in printed technology are low [31], even sub-cent [54] 2,
especially for additive and mask-less technologies such as inkjet
printing that may even allow portable and on-demand printing,
this enables highly custom bespoke classifiers - classifier
architectures that are customized to a model generated for
a given application using specific training datasets - even at
low to moderate volumes. Such degree of customization is
mostly infeasible in lithography-based silicon technologies,
especially at low to moderate volumes, due to high NRE costs
(lithography equipment, material processing equipment, etc.) as
well as high fabrication costs (maskset costs, etc.). This degree
of customization enables reduced area and gate count designs,
which further reduces marginal costs3. In this section, we
present the first quantification of benefits of bespoke classifiers
in printed technologies.
A. Bespoke Decision Trees

To generate bespoke serial decision trees (Fig. 4), we explore
trees with width 4, 8, 12 and 16 bits for a given application

2As reference, Fujifilm Dimatix 2850 Materials inkjet printer [57] that
we use to print electronics costs 50000USD and achieves sub-cent marginal
cost per printed circuit when accounting for the cost of cartridges, ink, and
other materials; in contrast, even older silicon foundries may cost hundreds of
millions of dollars [35]

3Marginal costs may get even lower for higher degree of commercialization
(since cartridges/inks/materials may become cheaper). Fixed costs (e.g., printer)
may also decrease at high volumes.

a)

b)

c)

Fig. 4: Architecture of a): bespoke serial trees, b) bespoke maximally
parallel trees, and c) bespoke regression-based SVMs.

and use scikit-learn to calculate the accuracy corresponding to
those widths. We pick the tree that gives the best accuracy for
the application (up to three significant digits) with minimum
hardware cost (e.g. for Arrhythmia DT-1, accuracy remains
the same when we increase the classifier width from 4 to 16,
hence we pick DT-1 with 4-bit comparator width). In addition,
we customize the mux to have a number of inputs equal to the
number of input features. We also customize the width of the
shift register to be equal to the depth of the tree. Size of each
entry in the Threshold ROM is customized to the width of
threshold values. The number of entries in the class ROM size
is customized to match the number of classes. Fig. 6 shows the
delay, area, power analysis of EGT bespoke serial trees relative
to conventional serial trees. EGT bespoke serial trees have
1.2%, 37%, and 22% improvements in latency, area, and power
(on average). Corresponding benefits for CNT-TFT bespoke
serial trees (not shown) are 1.02%, 33%, and 26% respectively.



Fig. 5: Left/Middle: Design flow of the proposed hardware prototype of a 2-bit balanced and depth-of-2 bespoke digital Decision Tree.
Top-level design of the hardwired Decision Tree is converted into logic level representation and then into transistor level circuit description.
Next layout-extraction and microscope photo of the fabricated Decision Tree extracted. Right: Transient Measurements

Fig. 6: Bespoke Serial Trees normalized against the conventional
Serial Trees.

To generate a bespoke maximally parallel tree (Fig. 4),
the registers that are used for holding thresholds and inputs
in the conventional architecture are removed. We train all
the trees using our scikit-learn framework to get the trained
threshold values which we then hardwire in the RTL, replacing
the threshold registers in the conventional maximally parallel
implementations. The input feature registers are replaced with
connections directly to the input feature port they will use. The
synthesis tool can then optimize away unnecessary gates in
the design. For example, now that the actual trained threshold
values are hardwired, the comparators have only one variable
input which greatly simplifies overall design. We use the
same methodology as bespoke serial trees to finalize the
bitwidth of the tree. Results for EGT bespoke parallel trees are
shown in Fig. 7. Our results show that the bespoke maximally
parallel decision trees perform much better in all measures
compared to their conventional counterparts. Latency, area, and

Fig. 7: Bespoke Maximally Parallel Trees normalized against
conventional Maximally Parallel Trees.

power improve by 3.9×, 48.9×, and 75.6× respectively (on
average). CNT-TFT bespoke maximally parallel trees yield
similar benefits - latency, area, and power benefits (not shown)
are 6.6×, 62.6×, and 27.3× respectively (on average).

EGT parallel bespoke trees have 10.3× lower area, 28.8×
lower power, and 9.51× lower latency, on average, compared
to their bespoke serial equivalents. In fact, unlike conventional
counterparts, parallel bespoke trees are strictly better than serial
bespoke trees.
B. Bespoke SVMs

We also developed bespoke SVM classifiers (Fig. 4). The
number of input features, coefficients, multipliers, and com-
parators, as well the width of the registers, multipliers, adder,
and comparators were fixed to the corresponding application
specific values which we get after training the SVM regression
models on the corresponding datasets using our scikit-learn



framework. In addition, since registers are expensive in printed
technologies (a DFF is 1.41 mm2, 0.018 mm2, and 3.99 µm2 in
EGT, CNT-TFT, and TSMC 40nm respectively; corresponding
power values are 121 µW, 77 µW, and 4.7 µW), we replace the
registers with hardwired trained coefficient values. Now that
the coefficients are hardwired, our multipliers have only one
variable input which further optimizes the logic of hardware
multipliers. Fig. 11 shows that EGT bespoke SVMs have 1.4
× lower delay, 12.8 × lower area, and 12.7 × lower power
(on average) compared to conventional SVM implementations.
Corresponding benefits for CNT-TFT bespoke SVMs (not
shown) are 1.7×, 16×, and 8.96× respectively.

C. A Bespoke Decision Tree Prototype

Finally, to demonstrate the feasibility of printing bespoke
classifiers, we designed and fabricated an EGT-based 2-bit
encoded bespoke balanced and binary Decision Tree of depth
2 with threshold 102 (Fig. 5). Such a tree is easily transformed
into a simple logic gate representation (Fig. 5). We extracted the
corresponding circuit-level layout and used the Fujifilm Dimatix
2850 Materials inkjet printer for EGT-based fabrication on a
ITO-sputtered glass substrate, which was structured by laser-
ablation to obtain the passive conductive tracks. A microscope
photo of the fabricated circuit after printing the EGTs is shown
in Fig. 5.

To test operation of the prototype, all output class label pins
C1,C2,C3,C4 were measured against all possible input signals
of the relevant bit positions in x1 and x2, which are: x2

1,x
2
2,x

1
1.

As can be seen from Fig. 5, only one class label Ci is activated
at the same time, in accordance to the functional description
in Fig. 5. Thus the fabricated circuit is fully functional. Also,
as the outputs of root and split nodes in this design have a
high input impedance and low output impedance, the presented
depth-2 tree can be used as a building block for building
arbitrary larger trees.

To the best of knowledge, this is the first quantification of
the benefits of bespoke classifiers in printed technology. Also,
this is the first prototype of a digital Decision Tree in a printed
technology.

V. LOOKUP-BASED PRINTED
CLASSIFIERS

It is well known [22] that a computational function typically
implemented using digital or analog logic can often also be
implemented as a lookup table (LUT). The practicality of this
approach depends on a judicious selection of the computation to
replace with a LUT as well as the overheads of the technology
the LUT is implemented in. In several printed technologies,
including EGT, ROMs have low area and power overhead (e.g.,
1-bit EGT ROM has an area of 0.05mm2, while one-input
inverter has an area of 0.22 mm2 [10], corresponding power
values are 3.13 uW and 9.6 uW respectively) since ROMs
can be built simply as a crossbar architecture where the cross-
points are shorted by printing a conductive material (such as
PEDOT:PSS) to represent a bit-value [10]. Unlike silicon where
ROM cells can have high delay (e.g., 900× slower than the
inverter cell [79]), delay of an EGT crossbar-based ROM cell

is also low (within 1.5× of inverter cell [10])4. This opens
up the possibility of implementing classifiers using lookup
tables (LUTs) where computation logic (e.g., comparators in
Decision Trees and multipliers in SVMs) are replaced by LUTs
to reduce area and power overhead.

Two issues arise when replacing logic with ROMs. The first
issue is: how much computation should be replaced with each
LUT? If the amount of computation we replace with a ROM
is too large, the number of ROM entries in the replacement
is also large, and we may not see benefits. If the amount of
computation we replace is too small, the surrounding logic (e.g.,
muxes and decoders) needed to access ROM can become too
expensive. An exploration is needed to find the right amount
of computation to replace with ROM. The second related
issue is: how much reuse occurs for the surrounding logic
(e.g., decoders)? For the ROM sizes that we are interested in,
the decoder, for example, is expensive enough that a ROM-
based comparison is always more expensive than its logic-
based counterpart. The effective overhead of the decoder per
lookup can be decreased, however, if the same decoder is
used multiple times (i.e., if it can be shared across multiple
computations). Fortunately, this is often the case with classifiers
since classifiers compute on the same input feature multiple
times.
A. Lookup Replacements in Decision Trees and SVMs

In serial Decision Trees, there is only one comparator to
replace and none of the inputs are used simultaneously, so
ROMs are not a good fit for logic replacement (the area
and power of individual lookup-based comparator was 6.7×
and 7.3× respectively compared to the non-lookup based
comparator due to decoder overhead). In parallel Decision
Trees, however, there are often many comparisons using the
same input feature leading to signficant decoder reuse. Fig. 8
shows the architecture of lookup-based implementation of
maximally parallel trees. In Fig. 9, we show the latency, area
and power benefits we obtained from replacing all comparators
in the EGT parallel tree implementations with lookup based
equivalents (results are normalized against bespoke maximally
parallel trees). In many cases, especially with shallow trees,
there is not enough input feature reuse for lookup tables to
be useful. But, in the best case, we see 13%, 38%, and 70%
improvements in delay, area, and power. For CNT-TFT, the
ROM area is typically greater than logic area (0.05 mm2 1-bit
ROM vs 0.002 mm2 one-input inverter [10]), while ROM power
is lower than logic power (2.77 µW 1-bit ROM vs 8.08 µW
one-input inverter [10]). As a result, a lookup-based parallel
tree implementation provides 76.2% power benefit, on average,
at the cost of increasing the area 69×.

For SVMs, we replaced the multipliers with ROM-based
implementations (Fig. 8). However, the area and power of
individual lookup-based multiplier was 1.30× and 1.17×
respectively compared to the non-lookup based multiplier due
to decoder overhead. Fig. 12 shows the latency, area, and power

4ROM cells also have high power in silicon; ∼ 1200× the power of an
inverter cell [79]



Fig. 8: Architecture of lookup-based classifiers.

Fig. 9: Lookup-based implementation of Bespoke Maximally Parallel
Trees. Normalized against Bespoke Maximally Parallel Trees.

Fig. 10: Impact of additional optimizations for Lookup-based
Maximally Parallel Trees. Normalized against Bespoke Maximally
Parallel Trees.

Fig. 11: Bespoke SVMs normalized against conventional SVMs.

Fig. 12: Lookup-based implementation of Bespoke SVMs. Normalized
against Bespoke SVMs.

Fig. 13: Impact of additional optimizations for Lookup-based SVMs.
Normalized against Bespoke SVMs.

of lookup-based SVMs normalized with respect to bespoke
SVMs in EGT. Since every input feature is used only once,
there is no decoder sharing like there was for parallel Decision
Trees. As such, we do not see any benefits.

Fortunately, lookup-based classifier architecture introduces
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Fig. 14: a)/b): Schematic/Microscope Photo of a 4x1 ROM. c):
Transient Measurements of the ROM.

additional printing-specific optimization opportunities. First,
if certain output bits from lookup tables stay constant (i.e.,
all values within a column of the table are identical) - a
frequent occurrence for the small lookup tables we use, the
corresponding pieces of the table (e.g., the columns with
identical bits) can be removed. Also, the constant is hard
coded in the RTL to allow the logic synthesis tool to optimize
logic downstream. Second, we can use a bespoke design for
the ROM. When a bit stored in the ROM is set, we print a
dot resistor at the crossover point of column and row. When
a bit is clear, no dot is printed resulting in infinite resistance
(Fig. 14). Since the dot resistors are much larger than a wire
crossover point in the ROM, clear bits consume practically
zero area, while the decoder remains unchanged.

Fig. 10 and Fig. 13 show the impact of the two optimizations.
For EGT maximally parallel Decision Trees area and power
benefits are increased by 52%, and 12% respectively compared
to non-optimized lookup-based implementations. Perhaps more
interestingly, lookup-based SVMs now see area and delay
benefits for multiple applications. Note that these optimization
would be mostly infeasible in silicon due to the high degree
of customization.

B. Lookup Prototyping

Finally, to demonstrate feasibility of implementing lookup-
based classifier architectures, we fabricated a 4x1 printed one-
time programmable ROM element. The four rows of the ROM
in Fig. 14 are accessed by a decoder logic block consisting of
pass transistors T1 − T4, while data is stored in a resistive
crossbar architecture with printed resistors R1 − R4 at the
crossbar interconnects. The read signal of a read operation
is obtained from the output voltage Vout across the sensing
resistor Rsense. The printed ROM basically implements a voltage
divider structure, with the fixed Rsense in the pull-down network
and the variable printed resistors Ri in the pull-up network.
By tuning the geometry of the printed resistors, different
resistance states can be encoded which represent multiple bits
of information. The chosen resistances of the printed prototype
were: R1 = 2Rsense, R2 = ∞ (not printed), R3 = Rsense/2 and
R4 ∼ 0Ω (maximum resistor area).

Thus 2-bit of information could be encoded per ROM
element, and thus 8-bit information for the whole 4x1 ROM.
Transient measurements in Fig. 14 show data being read out
successfully based on the decoded address.

The delay of the prototyped ROM element was about
10ms with an average power consumption of 39µW. The area
requirement was 38mm2. The printed prototyped ROM can be
easily scaled to larger memory sizes by adding additional rows
or columns and can, therefore, serve as the building block for
lookup-based printed classifiers.

VI. ANALOG PRINTED CLASSIFIERS

One effective method for significantly reducing transistor
count, and, therefore, overall area and power overhead, in
printed classifiers could be to judiciously substitute complex
logic (e.g., multi-bit comparators in Decision Trees) by small
analog circuits with only few transistors [23]. For some
applications, an analog classifier architecture may also allow
sensor outputs to be connected directly to the classifier, avoiding
costly analog-to-digital converter (and reverse).

In silicon-based (SI) classifiers, such substitutions are partic-
ularly challenging since a) it introduces additional verification
and test challenges [58] [33], and b) noise and mismatch
constraints force the analog devices to be large and, therefore,
any area and power benefits may be lost [33]. In printed
technologies, low fabrication costs allow iterative refinement
to fix/reduce noise/mismatch issues. Therefore, such analog
substitutions may be more feasible.
A. Analog Replacements in Decision Trees and SVMs

To build an analog Decision Tree architecture, we observe
that, at each node of the Decision Tree, the binary decision
can be formulated as an if-else-statement of the form: xk ≤ τ j,
where τ j is a pre-defined threshold determined by the learning
phase. For an analog implementation, this binary comparison
can be realized by a back-to-back inverter, which has a printed
resistor in the pull-up network of one of the inverters, and a
transistor in the pull-up network of the opposite inverter (see
root node in Fig. 15). Moreover, the features xk are encoded
as voltage signals, and are normalized to the interval [0V,1V ].



a)

b)
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Fig. 15: a): Circuit of a MAC engine for analog SVM implementation.
b): Schematic and layout of a 2-level analog Decision Tree with one
root and two split nodes c): Digital post-processed image from multiple
microscope photos of the printed 2-level analog Decision Tree with
corresponding transient measurements.

Fig. 16: Analog Trees in EGT. Tree results normalized against
Bespoke Maximally Parallel Trees.

Subsequently, the input is then applied to the gate of a transistor
in the pull-up network, and converted into a resistance value.

Fig. 17: Analog SVMs in EGT. SVM results normalized against
Bespoke SVMs.

Dependent on the input voltage level, the equivalent transistor
resistance changes its value in the range of certain On-
and Off-resistances ([Ron,Ro f f ]), dependent on the transistor
characteristics. Next, the threshold τ j is encoded as a resistor,
by using the following mapping function:

R j =
τ j−τmin

j

τmax
j −τmin

j
· (Rmax −Rmin)+Rmin, where Rmin,Rmax are

the technology-dependent and feasible (printable) resistor
values, and τmin

j ,τmax
j are determined by the trained decision

tree model.
Based on the difference of resistances of the transistor and

resistor, one output node (S1 or S2) is pulled up stronger to
VDD than the other, and the bi-stable back-to-back inverter
converges to a state, where the output nodes are complementary
(‘1’/‘0’ or ‘0’/‘1’). These output signals are then passed to
the child nodes, where only one is enabled at a time, based
on the analog binary comparison. This structure guarantees
that at any level of the tree, only one child is selected, and
hence, at the leaf level, one and only one leaf is selected.
An interesting side-effect of this is that switching activity is
limited to the depth of the tree. In effect, there is implicit logic
which gates off unused portions of the circuit from consuming
dynamic power. For any Decision Tree design, the process
of adding split nodes to the last layers is repeated until the
desired Decision Tree architecture is reached, and the class
labels are read out from the leaves of the last split nodes in
each branch. Due to the insertion of selector transistors in the
split nodes, the resulting voltage levels deteriorate from the
root node down to the split nodes in the last layer. This signal
attenuation across a cascade of split nodes can be compensated
for by using additional inverters (buffers) before the input of
the selector transistors, to improve the signal levels.

Fig. 16 shows the latency, area and power of analog
implementation of bespoke maximally parallel trees in EGFET.
Our calculations show that analog trees have 437× less area
and 27× less power (on average) with slight increase in latency
( 1.6×) compared to digital bespoke maximally parallel trees.



We similarly developed an analog SVM implementation
where we replaced the MAC operation by a one-time pro-
grammed resistive crossbar architecture, depicted in Fig. 15.
The crossbar architecture is programmed by printing resistors
with different geometries at the crossbar interconnects. The
inputs to the crossbar are voltage signals, and the output current
is sensed per each column separately.

The MAC operation is performed by applying Kirchoff’s rule
to the resistor network. The output voltage V (c)

out of a virtually
grounded column c is computed by:

V (c)
out = ∑

P
i=1

Vi

R(c)
i

(
∑

P
i=1

1

R(c)
i

)−1

= ∑
P
i=1 Vi w(c)

i (1)

with
w(c)

i =
1

R(c)
i

(
∑

P
i=1

1

R(c)
i

)−1

(2)

where P is the number of rows per column.
Thus, the MAC operation can be directly derived from (1),

where the values wi can be determined by printing appropriate
resistance values Ri, which solve (2). As the voltages are set as
the MAC inputs Vi = xi, the mathematical form of a multi-input
MAC operation is obtained: y = ∑

P
i=1 wixi.

Fig. 17 shows the latency, area and power of analog
implementation of bespoke SVMs. Our calculations show
that, in analog implementations, on average, area and power
improve by 490× and 12× with slight increase in latency 1.3×
respectively. To the best of our knowledge, these are the first
printed implementations of analog Decision Trees and SVMs
and quantification of their benefits.

B. Analog Decision Tree Prototype

Finally, to demonstrate the feasibility of analog printed
classifiers, we fabricated an analog 2-level Decision Tree
based on EGT-technology. The fabricated 2-level Decision
Tree consists of one root node and two split nodes (Fig. 15)
resulting in 11 EGTs and 3 printed resistors. In this layout,
PEDOT resistor is printed into the gap between the source of
TS and c4. The overall fabrication process was similar to one
described in Section IV-C. In addition to EGTs and resistors,
crossovers were also inkjet printed to make the connections,
by using an isolation layer (Dimethylsulfoxide (DMSO) and
Polycarbonate (PC)) in combination with a conductive layer
(PEDOT:PSS). A microscope photo of the fabricated 2-level
Decision Tree is provided in Fig. 15.

The transient measurements for the root node are depicted
in Fig. 15. As expected, when the input x1 is at logical ‘1’,
S1/S2 are in state ‘1’/‘0’. When x1 is ‘0’, the state changes to
‘0’/‘1’. The transient response of the right split node to all 4
input combinations is also shown in Fig. 15. In the case the
split node is unselected (x1 is high), the output voltages C3/C4
are pulled down to 0V. On the other hand, if the split node is
selected (x1 is low), C3/C4 are pulled up or down, according
to the input signal x2. The worst case output signals of the
split node are clearly distinguishable (405mV), and hence the
printed analog Decision Tree was functioning correctly. This
is the first prototype of an analog Decision Tree in a printed
technology.

Fig. 18: Block Diagram of a canonical printed classifier system. The
power source may be a printed battery or a harvester. Components
outlined using dashes may be omitted in certain contexts.

Fig. 19: Optimized analog and digital classifiers placed into sets based on which
sources can power them (similar to Fig. 3). For each decision tree depth, we pick the set
for the power source that can power all bespoke benchmark variants. E.g., Molex printed
batteries can power depth-4 digital decision trees for each benchmark. Harvesters [42]
are now capable of powering several decision trees. The ‘a’ and ‘d’ suffixes on ‘SVM’
and ‘DT’ are for ‘analog’ and ‘digital’ respectively.

VII. DISCUSSION

A printed ML classifier is only a component of a complete
classification system (Fig. 18). Some classification applications
(e.g. HAR, Pendigits, Red-Wine and White-Wine) require
no feature extraction, as the accelerator performs inference
directly on the sensed signals. For other applications, feature
extraction can be performed either with a custom designed
fixed-function unit, or with software running on a printed
microprocessor [10]. Sensors are either integrated directly into
computational units, bypassing ADCs [60], [61] or use printed
ADCs [1]. Since the role of any printed system is known at
print-time, interfaces can be custom. Additionally, due to the
low cost of wires and high cost of flip-flops [10], parallel
ports may be preferred to serial ports. Since these components
are integrated to the same substrate at print time and are
unpackaged, there are no concerns over pin counts. In general,
the ideal applications for printed classifiers are those with non-
categorical data (signals have to be measured in the field) with
minimal feature extraction requirements, and relaxed latency
requirements.

Fig. 19 shows that, unlike conventional classifier architec-
tures (Fig. 3), most printing-specific classifier architectures
can be powered by a printed battery or an energy harvester.
However, we still see that several classifiers are currently
infeasible due to power limitations. We also see that the power
supply requirements of bespoke classifiers is dataset dependent
(all bespoke analog SVMs can be powered by Blue Spark



batteries, except for Arrythmia). These results motivate the
need for further research in printed batteries and harvesters.
Additionally, it suggests that certain applications will need to
sacrifice classification accuracy in order to meet power budget
requirements.

Conventional printed classifiers are expensive even when
a full system is considered. For example, we estimate EGT-
printed 2-bit / 4-bit ADCs to cost 3.76 mm2 / 25.4 mm2 in
area and 60 µW / 360 µW power [10]. Conventional EGT-
printed classifiers (Tables III, IV, V) are often much bigger
(∼20 to 1445 cm2) and consume orders of magnitude more
power (1.6 to 4200 mW). Similarly, a printed microprocessor
based feature extraction (FE) may cost ∼2 to 3 cm2 [10];
printed sensors can be as small as ∼0.5 mm2 and consume
<2 mW [38]. Again, conventional printed classifiers are much
more expensive (Tables III, IV, V). A classifier’s system-level
overhead will be even higher when ADCs and FE engines
are optimized for area or power, or not used entirely (e.g, in
case of direct interfacing [60]. The techniques proposed in this
paper, therefore, would provide significant system-level benefits.
This would be true even when power supply is considered;
commercial printed batteries occupy 20 to 50 cm2, while printed
backscatter mechanisms (e.g., for RFIDs) are at least an order
of magnitude smaller [75].

Design of printed classifiers is highly automatable. After
training a decision tree on a dataset, scikit-learn’s Decision-
TreeClassifier class exposes the internal structure of the trained
tree, allowing us to traverse the tree and recursively transform
it into RTL for a bespoke decision tree classifier (we perform a
similar transformation for SVM). Ozer et al propose a similar
design flow. For our bespoke parallel trees, the generated RTL
module body consists of a single assignment statement for each
node in the tree, as well as a ‘casex’ statement to choose the
correct output class, a relatively straightforward transformation.
For the serial trees, the tree is transformed into hexfiles
representing the class and threshold values which are stored in
ROM. For lookup-based classifiers, we replace comparisons in
decision trees and MACs in SVMs by generating in RTL
lookup tables in place of those operations. An automated
process for finding what to replace with lookup tables and
how to replace it has the potential to lead to better results.
We know that one indicator of a beneficial replacement is
MISD parallelism (since it allows decoder reuse). Finding
MISD parallelism in a design tool can be done by finding high
fanout nets. Then, for each output connected to a given net,
the tool finds maximum amount of logic that only depends
on that net and replaces that logic with a ROM. The correct
methodology for automatically determining how to break up
a given computation into multiple lookup tables and logic
that combines their results is not obvious and requires further
study. Generation of analog classifiers is understandably more
difficult to automate (e.g., we do not know of any printed
analog libraries) - we consider it a subject of future work. Our
digital SVM and DT generator is published under an open
source license at https://github.com/PrintedComputing.

Compared to CMOS baselines (Table IV), EGT-based analog

/ digital trees are 10× / 1000× larger, and consume 105× /
106× more energy per inference. Similarly large area and
energy differences exist for SVMs. Thus it is unlikely that
there exist system design points such that an EGT-based
system outperforms a silicon CMOS system in terms of power,
performance, or area (PPA) – argument for printing must be
in non-PPA terms (cost, conformality, time-to-market, non-
toxicity, etc.)

Finally, envisioned applications for printed classifiers have
resilience requirements (against bending, dirt, humidity, wear
and tear, etc.). EGTs can be bent reliably to a radius of 10mm
over 100 times with ¡10% change in electrical characteris-
tics [43]; resilience against dirt, humidity can be provided easily
by a printed passivation layer [50]. This level of resilience
is adequate for the short-shelf-life applications we target. For
higher mechanical and temperature resilience, Kapton films [51]
can be used.

VIII. CONCLUSION

A large number applications domains have not seen much
penetration of computing due to the cost, conformity, and
toxicity limitations of silicon-based computer systems. Recent
low-voltage printed computer systems have the potential to
address these limitations. A common computational task in
these application domains is anticipated to be machine learning
classification. In this work, we explored the hardware cost of
inference engines for popular classification algorithms in EGT
and CNT-TFT printed technologies. We found that Decision
Trees and SVMs provide a good balance between accuracy and
cost. Subsequently, we evaluated conventional Decision Tree
and SVM architectures in these technologies and concluded
that their area and power overhead must be reduced for them to
be feasible. Then, we explored, through SPICE and gate-level
simulations and multiple working prototypes, several printing-
specific classifier architectures that exploit the unique cost and
implementation tradeoffs in printed technologies. Our evalua-
tions showed that bespoke EGT printed Decision Trees have
48.9× lower area (average) and 75.6× lower power (average)
than their conventional equivalents; corresponding benefits for
bespoke SVMs are 12.8× and 12.7× respectively. Lookup-
based Decision Trees outperformed their non-lookup bespoke
equivalents by 38% and 70%; lookup-based SVMs were better
by 8% and 0.6%. Analog printed Decision Trees provided 437×
and 27× benefits over digital bespoke counterparts; analog
SVMs yielded 490× and 12× improvements. Our results and
prototypes demonstrate feasibility of fabricating and deploying
battery and self-powered printed classifiers in the application
domains of interest.
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