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Abstract—The increasing size and complexity of massively
parallel systems (e.g. HPC systems) is making it increasingly likely
that individual circuits will produce erroneous results. For this
reason, novel fault tolerance approaches are increasingly needed.
Prior fault tolerance approaches often rely on checkpoint-rollback
based schemes. Unfortunately, such schemes are primarily limited
to rare error event scenarios as the overheads of such schemes
become prohibitive if faults are common. In this paper, we
propose a novel approach for algorithmic correction of faulty
application outputs. The key insight for this approach is that even
under high error scenarios, even if the result of an algorithm is
erroneous, most of it is correct. Instead of simply rolling back
to the most recent checkpoint and repeating the entire segment
of computation, our novel resilience approach uses algorithmic
error localization and partial recomputation to efficiently correct
the corrupted results. We evaluate our approach in the specific
algorithmic scenario of linear algebra operations, focusing on
matrix-vector multiplication (MVM) and iterative linear solvers.
We develop a novel technique for localizing errors in MVM
and show how to achieve partial recomputation within this
algorithm, and demonstrate that this approach both improves
the performance of the Conjugate Gradient solver in high error
scenarios by 3x-4x and increases the probability that it completes
successfully by up to 60% with parallel experiments up to 100
nodes.

Keywords—algorithmic error correction, partial recomputation,
error localization, numerical methods, sparse linear algebra

I. INTRODUCTION

As High-Performance Computing (HPC) and other mas-
sively parallel systems grow more capable, they also grow
larger and more complex. This means that as the number
of components in the systems rises, so does the probabil-
ity that one of them will suffer from a fault. Soft faults
in chip circuitry are among the most worrying for system
designers and application developers because they can corrupt
the application’s computations and produce incorrect output.
Tera-scale systems are already vulnerable to soft errors, with
ASCI Q experiencing 26.1 CPU failures per week [16] and
a L1 cache soft error occurs about once every five hours on
the 104K node BlueGene/L system at Lawrence Livermore
National Laboratory [9]. Looking into the future, according
to the International Technology Roadmap for Semiconductors,
the soft error rates (SER) will grow with smaller chip feature
sizes, with SRAM SER growing linearly with the number
of transistors on a chip [2], which grows exponentially over

time. This and the fact that many parallel systems of the
foreseeable future will have hundreds of thousands to millions
of electronic chips with feature sizes as low as 12nm [2] has
led several recent studies [8] to warn that “traditional resiliency
solutions will not be sufficient”. Hardware-based approaches
for fault tolerance have been proposed for many computing
systems. However, their reliance on redundancy makes them
impractical for future massively parallel systems because they
will be severely power-constrained [8]. In fact, evolutionary
extensions of today’s high performance computing (HPC)
systems (CrayXT, BlueGene) will be unable to reach exaFLOP
performance by 2020 within a power budget of 20MW, the
typical limit of modern computing centers [8].

The traditional approach for dealing with errors in systems
is to roll the application back to a prior checkpoint whenever a
fault is detected. This approach incurs a high cost in transfer-
ring checkpoint data [23]. Further, since expensive checkpoints
result in long checkpointing periods [23], each rollback incurs
a large cost in recomputing lost work. While this may be
acceptable in scenarios where faults are rare, as fault rates
increase with rising node counts and finer circuit features,
the cost of full-application rollback may become prohibitive.
Figure 1 shows the the performance of parallel linear solver,
CG, using a traditional checkpoint-restart approach in the face
of increasing fault rates.The results in Figure 1 assume that
faults can be detected perfectly when they occur, thereby
isolating the overhead due to application-level rollback. We
observe that the overhead of application-level rollback reduces
the performance of the solver by 2x-10x as fault rates increase.

In this paper, we propose a novel approach for fault
tolerance that uses algorithmic correction of faulty application
outputs based on error localization and partial recomputation.
The key insight of our approach is that even under high error
scenarios, a large fraction of the output is correct even if a
portion of it is erroneous. Therefore, instead of simply rolling
back to the most recent checkpoint and repeating the entire
segment of computation, our approach identifies and corrects
the actual subsegments of the output which are faulty. The
correction technique we propose is algorithmic and leverages
the properties of individual algorithms of interest to identify
fault locations and limit the scope of recomputation. For
example, errors in the output of a sorting algorithm can be
localized by scanning through the results [28] and noting the
ones that are mis-ordered, missing or new. A small number of
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Fig. 1: Parallel CG Performance for different fault rates, when
using traditional checkpoint-restart approach and assuming
perfect fault detection, (Number of processor nodes=10, ac-
curacy target=1e-6).

such errors can be corrected efficiently without repeating the
entire sort.

This paper explores this concept in the context of numerical
linear algebra in high error scenarios on parallel systems. It
focuses on the matrix-vector multiplication (MVM) operation
as well as iterative linear solvers. MVMs often dominate
computation in many HPC and Recognition, Mining, and
Synthesis (RMS) applications (see Section IV-E). We make
the following contributions:

• We propose a partial recomputation- based approach
for algorithmic correction, that is much more suited
for high error rate scenarios than more traditional
fault tolerance approaches, such as checkpoint/restart,
which incurs high recovery costs.

• We propose a novel algorithmic technique for error
localization (the process of identifying partitions of
faulty and non-faulty outputs) for MVM operations.

• We show that the proposed techniques scale much bet-
ter than traditional parallel fault tolerance approaches
because they alleviate the performance bottlenecks
that arise from high recovery costs.

• We quantify the performance benefits of partial re-
computation and error localization in the context of
parallel MVM and the parallel Conjugate Gradient
(CG) iterative solver, which uses MVM internally
under varying magnitude error rates. Our experiments
show that while traditional detection/rollback has 2x-
3x overhead under high fault rates, Partial recomputa-
tion is 2x cheaper while maintaining similar accuracy
as ideal detection/rollback approaches. With more
realistic detection schemes using dynamic thresholds,
partial recomputation-based approaches are signifi-
cantly more efficient (CG converges 70% more often
and performance overheads 2x-3x smaller).

• We study the scalability of these techniques within the
context of a parallel linear solver application for dif-
ferent parallel scales. For a fixed moderate fault rate,
partial recomputation-based approaches with complete

error localization reduce the overhead by up to 32% on
average when scaled up to 10 nodes and 320% when
scaled up to 100 nodes. Similarly, with the relaxed
error localization routine the overhead is reduced by
up to 77% at 10 nodes and up to 390% at 100 nodes.

By showing the utility of partial recomputation in the context
of popular numerical algorithms we hope to demonstrate the
value of research into partial recomputation in the context of a
wider range of algorithms. Since this approach is significantly
more efficient than whole-application recomputation and also
significantly simpler than algorithmic correction techniques,
we expect that this line of work will be extremely productive in
ensuring cheap and effective resilience on future HPC systems
and other massively parallel systems.

The paper is organized as follows. Section II describes
related work and explains the limitations of prior checkpoint
and rollback techniques. Section III describes the opportunities
and approaches for low overhead algorithmic fault correction.
Section IV discusses the methodology for evaluating the ef-
fectiveness of the techniques. Section V presents the results.
SectionVI concludes.

II. RELATED WORK

Checkpoint and rollback mechanisms have been the dom-
inant approach for providing fault tolerance for HPC and
massively parallel systems for decades [1, 19, 30, 5]. These
approaches all rely on periodically saving the application
and system state (i.e. address space, message buffers, and
architectural state), so that if a fault is later detected, the system
can simply restart from the saved prior state, rather than from
the beginning of the application. Although this approach is
exceptionally general, it can also incur prohibitive performance
overheads under high error rate scenarios, due to large recovery
costs.

For checkpoint-rollback based techniques, there does exist
a tradeoff between the detection latency and the checkpoint
frequency. For example, a system can increase the checkpoint-
ing frequency in order to reduce the detection latency and
recovery costs [29]. However, this also significantly increases
the checkpointing overhead in terms of performance, storage,
and bandwidth, limiting the efficiency of this type of tradeoff.
Our proposed approach instead uses algorithmic correction
to partially recompute localized regions of output which are
identified as being erroneous and reduce the recovery cost
associated with rolling back and recomputation

Some previous studies have also identified checkpoint-
rollback as significant limitation for future systems, mainly due
to the storage and bandwidth overheads, and have proposed
alternatives to checkpointing. In the context of permanent
failures, Chen et. al. study the use of erasure-codes to recover
lost data and eliminate more traditional checkpoints [6]. In this
paper, we focus on transient computation faults which require
an active detector. Also, rather than eliminating checkpoints
entirely we propose the use of error localization to guide the
algorithmic correction of errors by partial recomputation.

There is also much related work on algorithmic fault
tolerance approaches. For linear solvers, some algorithmic
techniques [25, 17] have been proposed that add additional
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inner/outer optimization loops to account for noisy computa-
tions. Researchers have also studied the use of linear error
correcting codes [18] with algorithmic techniques for fault
tolerance. The check for a linear operation, such as the matrix
vector product (Ax where matrix A and vector x are inputs)
detects faults by verifying that the following identity holds:

cT (Ax) = (cTA)x

Intuitively, the check computes the projection of the result
Ax onto the vector c in two different ways. If there are any
computation errors, the two projections will very likely be
unequal (e.g. the difference between projections surpasses a
given threshold, τ ) In the common case where c = 1̄ (a vector
of all 1’s), the projection is equivalent to multiplying x by the
vector containing the sums of matrix A’s columns.

Consider for example, a 5x5 matrix A and an input vector
x:

A =


3 0 2 3 4
2 1 0 2 5
0 3 2 1 6
1 0 3 2 2
3 1 0 0 2

 , x =


5
5
7
1
2


The correct output of the matrix vector product is:

y = Ax =


40
27
42
32
24


Let say that an error (e) perturbs the correct output y into

y′:

y′ = y + e, e =


3
5
0
0
0


In order to detect whether output y′ is correct, take a vector c:

c =


1
1
1
1
1


Performing the error detection involves checking whether

the checksum invariant holds ( cT y′ = cTAx). In practice, the
check invariant can be verified by computing the difference
between the checksums (i.e. the syndrome) and comparing it
to a threshold (τ = 0). In this example, if the syndrome is not
equal to zero an error is detected, otherwise the computation
is deemed correct:

cT y − (cTA)x = 0 (OK, check invariant holds)
cT y′ − (cTA)x = 8 (Error(s) in the output!)

The check works similarly for other linear operations as
well.

Results from these checks can also be used for correction,
however this can be expensive. At least d code vectors are
required in order to correct at most bd/2c errors. Moreover,
correction is heavily code dependent and not a trivial problem.
(i.e. In order to correct multiple faults linear codes usually use
a set of vectors each with unique non-binary codes and then
the problems results in having to solve a non-trivial system of
nonlinear equations [3]).

For this reason, traditional approaches commonly rely
on checksum-based techniques for detection, but still rely
on high overhead checkpoint-rollback for correction. In the
above example, for example, if an error is detected (e.g.
cT y′ − (cTA)x = 8 signals an error), it will trigger a restart
since the last checkpoint, which may result in high total
overhead of recovery over the entire execution. Even recent
work [27] on reducing the overhead of checksum-based
techniques for detecting faults of sparse linear algebra, still
relies on checkpoint-rollback for the correction of errors. This
paper proposes an entirely different approach for correction -
correction based on targeted algorithmic recomputation which,
in turn, is enabled by error localization through a checksum-
based technique. I.e., checksums are used to localize errors
rather than just detect errors which allows for low overhead
partial recomputation to be employed instead of high overhead
full restart. To the best of our knowledge, this is the first work
on algorithmic error localization and partial recomputation.

The ability to localize faults has been studied in the context
of parallel program where researchers attempted to locate
the cause of anomalies of parallel applications [22, 4]. Simi-
larly, researchers have proposed approaches for identifying the
physical location of detected hardware bugs [24]. This paper
proposes the use of error localization during the runtime of
the application to better guide partial recomputation.

Finally, there has been some work on algorithmic tech-
niques to avoid conventional checkpoint-restart mechanisms
in applications by transforming them into a form which is
naturally more tolerant to errors. In [26], arbitrary applications
are transformed into numeric optimizations problems due to
the fact that the solvers for these problems are inherently
robust to errors. A numeric optimization methodology provides
a general path for making applications robust. The performance
overhead incurred from this transformation varies across dif-
ferent applications. In general, if the complexity per iteration
of the transformed application is less than the complexity of
the original application the overhead is also low.

III. PARTIAL RECOMPUTATION

The traditional approach of rolling back and repeating
entire portions of applications upon the detection of faults
can be prohibitively expensive under high error rates. Instead,
we propose the use fine-grained partial recomputation to
enable efficient forward progress. To identify segments of an
application for fine-grained partial recomputation we will need
to efficiently find the location of errors. These operations are
possible in many algorithms and in this paper we demonstrate
how it can be applied in the context of linear operations,
focusing on matrix vector products (MVMs). MVMs often
dominate computation in many HPC and RMS applications
(see Section IV-E).
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A. Error Localization for Linear Operations

Suppose that the MVM operation Ax (A is a matrix, x
is a vector) outputs the vector ŷ which may be equal to the
correct result y or may contain errors. Errors in ŷ can be
detected by simply multiplying both Ax and result ŷ by a
check vector c that contains all 1s. The difference between
(cTA)x and cT ŷ (identical to cT (Ax)) is close to zero if there
is no error (accounting for round-off error) and notably larger
than zero if there is an error. Further, because the quantity
(cTA) can be pre-computed and reused for all multiplications
of A by a vector, this check is efficient, employing two dense
dot-products (good memory locality) to check a sparse MVM
(poor locality).

This basic algorithm can be extended to also identify the
fault’s location. Suppose that we replace all the 1’s in the
bottom half of c with 0’s and repeat the above check. If there
exist errors in the top half of ŷ, the difference (cTA)x)− cT ŷ
will be larger than zero but errors in the bottom half of ŷ will
have no effect on the result. This is true for any such variant
of c. Let ci,j = { vector with 1’s between indices i and j }.
We can check if any entry i of ŷ is erroneous by performing
the above check using ci,i instead of c. Because ŷ is large it
is significantly more efficient to detect the location of each
error hierarchically, checking for errors in each half of ŷ,
then “zooming in” on the half of each region found to be
erroneous. This procedure uses the tree of check vectors shown
in Figure 2 and operates by starting at the top of the tree and
proceeding downward. At each step the algorithm computes
(cTi,jA)x − cTi,j ŷ, where ci,j is the vector at the current tree
node. If a difference is detected, the algorithm recurses to
each of the node’s children. Any leaf nodes reached by this
algorithm correspond to precisely detected errors in ŷ.

In the worst case scenario (i.e. every element of the result ŷ
is erroneous), the algorithm would perform a computation for
every node, requiring 2n−1 dot-products, where n is the size
of ŷ. Fortunately, even under higher error rate scenarios, only a
small fraction of output entries are likely to be corrupted. As
such, only a fraction of the tree (O(log2(N)) will typically
need to be traversed for any check. For this reason, our
proposed error localization algorithm allows for much lower
average overhead as opposed to prior approaches which use
a fixed set of pre-designed codes for exact detection and
correction properties.

Once the locations of errors in ŷ are identified, they can
be corrected via targeted correction. The MVM operation has
the property that the element at index i in result vector y of
Ax is the dot-product of row i of A by the vector x. This
property makes it possible to correct the erroneous entries
by simply recomputing them from x and the corresponding
rows of A. Further, it can be observed that while the cost
of identifying that an error lies within a given index of ŷ
requires two dot products of matrix row by a vector, while
recomputing a given the same element of ŷ requires just one
dot product. This suggests that it may be more efficient to stop
the fault localization procedure early and recompute a larger
region of ŷ. In general, if our localization algorithm stops k
levels short from the bottom then 2k entries of ŷ need to be
recomputed. Section V experimentally explores this tradeoff.
Another observation is that, in many scenarios small errors
have little effect on the correctness of the algorithm that uses

MVM. For instance, many iterative algorithms converge from
a poor estimate of their result to an accurate estimate. As
such, small errors in intermediate estimates will have little
effect on convergence and it is thus more cost-effective to
allow such errors than correct them. Our algorithm can be
adjusted to meet the resilience needs of applications by using
a threshold τ where the localization and correction procedure
is only employed if the difference between (cTA)x) and cT ŷ
is larger than τ .

c=

c= c=

1 1 . . . .

1 1. . 0 0. . 0 0. . 1 1. .

1 1 1 10 0. . 0 0. .00 00..

Fig. 2: The complete set of codes with ‖c‖2 = 1 (i.e. the basis
of subspace) corrects all faults exactly by means of simply
computing all the syndromes for this set.

1) Example: Let’s consider the same input matrix A, input
x, and error e from Section II. In order to construct a binary
tree which can be utilized in the process of error localization,
we need to construct a set of c vectors. As described in Section
III-A, these vectors take the form:

ci,j = { vector with 1’s between indices i and j }
ci,i = { vector with exactly one 1 at index i }

For the prior 5x5 example, these c vectors are:

c0,4 =


1
1
1
1
1

 , c0,2 =


1
1
1
0
0

 , c3,4 =


0
0
0
1
1

 ,

c0,1 =


1
1
0
0
0

 , c0,0 =


1
0
0
0
0

 , c1,1 =


0
1
0
0
0

 ,

c2,2 =


0
0
1
0
0

 , c3,3 =


0
0
0
1
0

 , c4,4 =


0
0
0
0
1


Each of these codes are used to evaluate the check invariant

(cT y′ = cTAx) at a node in tree the binary tree. Part of the
second checksum (cTAx) may be precomputed or cached dur-
ing the execution. The precomputed products (cTi A = AT ci)
associated with the codes in this example are:
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AT c0,4 =


9
5
7
8
19

 , AT c0,2 =


5
4
4
6
15

 , AT c3,4 =


4
1
3
2
4

 ,

AT c0,1 =


5
1
2
5
9

 , AT c0,0 =


3
0
2
3
4

 , AT c1,1 =


2
1
0
2
5

 ,

AT c2,2 =


0
3
2
1
6

 , AT c3,3 =


1
0
3
2
2

 , AT c4,4 =


2
1
0
0
2


Performing error localization involves starting at the top

of the tree (i.e. with the vector c0,4) and evaluating the check
invariant in order to detect if any errors occurred during the
computation. By computing the difference in the checksums
(i.e. the syndrome) at the top node of tree reveals that at least
one error exists in the output:

cT0,3y
′ − (cT0,3A)x = 8 (Error(s) in the output (segment [0, 3])

Therefore, the algorithm proceeds to the next level of the
tree which now considers the same check invariant, but with
codes c0,2 and c3,4, which represent the first and second halves
of the output, we can further narrow down that the error(s)
must be located within the first half of the output.

cT0,2y
′ − (cT0,2A)x = 8 (Error(s) in segment [0, 2])

cT3,4y
′ − (cT3,4A)x = 0 (OK, No errors in segment[3, 4])

With the error(s) localized to the first half of the output, we
can ignore part of the binary tree corresponding to the second
and proceed to isolate the errors within the first half. The codes
c0,1andc2,2 locate the errors(s) within the first two elements
of the output.

cT0,1y
′ − (cT0,1A)x = 8 (Error(s) in segment c0,1)

cT2,2y
′ − (cT2,2A)x = 0 (OK, No errors in y’[2])

Finally, unary codes c0,0 and c1,1 each locate and identify
the specific magnitudes of both of the actual faults since they
contain a c vector containing exactly one 1 (i.e. ‖c4‖ = ‖c5‖ =
1). Note that at any point in the traversal of the tree, the error
localization process could be stopped and the segment of the
output corresponding where faults are potentially located is
recomputed (partial recomputation).

cT0,0y
′ − (cT0,0A)x = 3 (Error of 3 at y’[0])

cT1,1y
′ − (cT1,1A)x = 5 (Error of 5 at y’[1])

B. Exploiting Sparsely Structured Products

Due to the sparse and structured nature of codes used
within the error localization process, the runtime overhead of
locating faults can be further reduced. Each code is vector
comprised mostly of zeros except for one contiguous segment
of ones. The feature can be exploited in both matrix vector

products and the dot products that are used to compute
the checksums. The first two procedures described in Al-
gorithm III.1, illustrate how this structure can be exploited
to reduce the overhead of both the matrix vector products
and dot products used multiple times at every level of the
tree. By passing pointers indicating the segment start and
end points, only the rows of matrix A for the matrix vector
product and the rows of x, y for the dot product will be read.
Algorithm III.1 assumes that the matrix A is in CSR format,
which is represented by a row pointer array (pntr), an array of
the values within the matrix (val), and an array of the column
indices corresponding to those values (indx).

Based on the observation that the sparse matrix vector
product of a sparse and structured vector is also typically
sparse and structured (i.e. a sparse vector which is densely
concentrated), we can also compute the dot product on the
RHS of the check as a sparse dot product. This requires that we
store pointers indicating the location of the nonzero elements
in the vector. The sparse matrix vector product procedure in
Algorithm III.1 illustrates how the pointers for the output
vector can be easily computed as the inputs are scanned.

Note that on the LHS of the check invariant, we can
also exploit the structure of the tree and compute half of
the checksums, corresponding to the coded output (cyij), from
prior coded output calculations. However, a tradeoff exists by
doing this since the accuracy of checksum can be significantly
reduced (i.e. 3 − 5 decimal points or ±1e − 2 as opposed
to < 1e − 6 for the rounding error incurred from the typical
checksum calculation). For our experiments in Section V we
did not use this optimization due to the increase in floating
point roundoff error.

The error localization routine can also exploit the associa-
tivity/distributivity of the linear operations which compose the
checks to amortize the cost of the computation that pertains to
static inputs (i.e. the matrix A). Similar to [27], the coded
column sums (cTA) can be precomputed beforehand and
amortized over the execution of the entire application. Based
on the observation that in the average case the binary tree
does not need to be traversed entirely over the lifetime of
the application, we can significantly reduce the cost of having
to precompute all 2N − 1 coded column sum vectors (cTA).
Instead, we can simply compute the coded products ”on the
fly”, as they are needed and then cache them in case they are
needed in a later instance of the error localization routine.

1) Example: Performing the error localization process as
described in Section III-A involves traversing a binary tree
and computing a sequence of dot and matrix vector products
at each level. The performance of these products is primarily
dictated by the size of the inputs. With the prior example in
Section III-A for example, the input A is a 5x5 matrix, so
each dot product computation scans over two vectors of length
5 and each matrix vector product scans over every element of
the matrix and c vector.

Instead, we can perform the error localization process as
described in Section III-B and exploit the sparse and binary
nature of the operations within error localization to further
reduce the overhead.

At the top level node of tree, the computation of the check
invariant is similar to Section III-A, and uses the full matrix
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vector and dot product computation (superscripts represent
elements of vectors, e.g. ci0,4 is the ith element of the vector
c0,4):

cT0,4y
′ − (cT0,4A)x =

4∑
i=0

ci0,4y
′i −

4∑
j=0

xj
4∑
i=0

ci0,4A
ij = 8

Upon moving to the next level of the tree however, error
localization can now compute the syndromes sparsely rather
than using full matrix vector products and dot products.
This new version of the process uses the equivalent of 2
dot and 1 matrix vector product as opposed to the original
implementation from Section III-A which uses 4 dot products
and 2 matrix vector products.

cT0,2y
′ − (cT0,2A)x =

2∑
i=0

ci0,2y
′i −

2∑
j=0

xj
2∑
i=0

ci0,2A
ij = 8

cT3,4y
′ − (cT3,4A)x =

4∑
i=3

ci3,4y
′
i −

4∑
j=3

xj
4∑
i=3

ci3,4A
ij = 0

Similarly, as the algorithm proceeds to traverse the tree,
the nodes associated with c0,1 and c2,2 now use the equivalent
of about 2 dot products and half of a matrix vector product to
compute the syndromes which originally cost 4 dot products
and 2 matrix vector products.

cT0,1y
′ − (cT0,1A)x =

1∑
i=0

ci0,1y
′i −

1∑
j=0

xj
1∑
i=0

ci0,1A
ij = 8

cT2,2y
′ − (cT2,2A)x = y′2 −

4∑
i=0

xiA2i = 0

At the last level of the tree, the syndromes associated
with these final nodes, which provide the actual correction
due to having exactly one in their c vectors, are computed
using the equivalent of roughly 2 dot products, which is again
significantly less than the original 4 dot products and 2 matrix
vector products required.

cT0,0y
′ − (cT0,0A)x = y′0 −

4∑
i=0

xiA0i = 3

cT1,1y
′ − (cT1,1A)x = y′1 −

4∑
i=0

xiA1i = 5

The sparsity of the codes used in the error localization
processcan be exploited as shown above to reduce the overhead
of scanning over excess elements in the input vector (x), matrix
A, and the code (c) that do not impact the syndrome output. At
every level of binary search tree the number of dimensions that
are scanned is typically reduced by a factor of two assuming
that the error(s) are not pervasive and instead are spatially
isolated.

Algorithm III.1: LOCATEFAULTS(x, y)

procedure MATVEC SPARSE BIN(A, start, end)
comment: A is in CSR format (pntr,val,indx)

for i← start to end

do



for j ← pntr[i] to pntr[i+ 1]

do


y[indx[j]]+ = val[j]
if indx[j] < startout

then startout ← indx[j]
if indx[j] > endout

then endout ← indx[j]
return (y, startout, endout)

procedure DOT SPARSE(x, y, start, end)
temp← 0
for i← start to end

do temp+ = x[i]y[i]
return (temp)

main
subcy[0] =

∑N
i=0 yi

for k ← 0 to tree size

do



if finished[k] == 0
then

subcy[k] =
∑end[k]
i=start[k] yi

if valid[k]

then

{
subcA[k] = MATVEC SPARSE BIN(

A, start[k], end[k])
valid[k] = 1

cTkAx← DOT SPARSE(subcA[k], x,
start[k], end[k])

syndrome = subcy[k]− cTkAx

if |syndrome| < τ
then mark all children of k as finished

else
{comment: Recompute segment k

yk ← Akx (MATVEC SPARSE())

finished[k]← 1

IV. METHODOLOGY

A. Fault Model

Our evaluation focuses on transient faults that affect the
outputs of numerical computations. Other manifestations of
transient faults, such as memory corruption, deviations of
control flow or memory access errors are assumed to be ac-
counted for by using simple low overhead techniques [12, 13],
unless they manifest as numerical data errors, which the
proposed techniques cover. This is a widely addressed fault
model [18, 14, 11].

Faults are injected into the computation by instrumenting
the application directly and calculating the random faults on-
line. During execution the instrumentation code adds a random
numeric error to the output of individual multiply/addition
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Variable Description
N Number of Rows and Columns in A
tree size Total number of segments in tree: 2N − 1
subcA[k] Storage of coded checksums (i.e. cTA products
valid[k] Indicates if subcA[k] has been computed
subcy[k] Storage of cT y products
finished[k] Indicates if kth node completed (eliminated)
syndrome[k] Syndrome computed for segment/node k
cstart[k] Index of first element of segment k
cend[k] Index of one past the last element of segment k

TABLE I: Fault Localization Variables

operations used within matrix vector multiplication [27]. Faults
are also similarly injected into the arithmetic operations that
compose the checks themselves.

Over 50k runs were executed in order to get the statistical
results shown in Section V. These experiments were run in
parallel on HPC systems at LLNL (Sierra, Hera, and Atlas),
where the distribution was analyzed and plotted using matlab
and ggplot2 [31].

Since the timing of each fault is assumed to be independent,
fault times are sampled from an exponential distribution with
a rate λ. 1

λ is the expected number of arithmetic operations
between consecutive faults. The fault rate of a system is
defined as the probability that a given arithmetic operation
has a fault and is equivalent to λ in our methodology.

Our experiments examine different fault rates that model
phenomena ranging from physical faults arising from infre-
quent particle strikes (3-4 soft errors per day) to frequent errors
arising from the use of aggressively designed (error-prone)
technologies at large scales (multiple errors per second). A
fault rate of 1e-8 corresponding roughly to soft errors which
occur about 3 per day, and 1e-4 corresponds to aggressively
designed systems, which trade off accuracy for energy for
example, and exhibit multiple errors per second.

When a fault occurs, it is modeled by drawing a value
from a fault distribution that models the arithmetic effects of
circuit-level faults at a high level (i.e. a symmetric distribution
with two Gaussian modes, centered at 1e5 and −1e5 and with
variance 1e2) and adding it to the target operation. These error
magnitudes distributions are representative of faults arising in
arithmetic units from timing errors due to voltage over-scaling
[27, 20].

Parameter Description
Fault Rates 1e-8, 1e-7,4e-7,1e-6,4e-6,1e-5,1e-4
Fault Model Symmetric distribution w/ two

Gaussian modes
Parallel Nodes (N) 1,2,10,20,100

TABLE II: Fault Parameters

B. Benchmarks

The algorithmic fault detection techniques were imple-
mented within the SparseLib library [10] of core sparse linear
algebra operations, including matrix vector multiplication. To
understand the effectiveness of our technique in a wide range

of practical contexts, we evaluated them on 30 randomly cho-
sen square linear systems from the University of Florida Sparse
Matrix Collection and Matrix Market [7, 15] with the following
properties: matrix size ∈ [1000, 100000], symmetric, positive
definite, and real. These are the most common parameters for
matrices used in scientific computing applications and those
used with linear solvers due to good convergence properties.
These matrices represent a variety of physical phenomena
and real algorithms, including model reductions, computational
fluid dynamics, and circuit simulation. Table III lists the chosen
matrices and their properties (nnz represents the number of
non-zero elements, N represents the size of the problem,
and Sparsity represents relative number of non-zeros per row,
nnz/N ).

We evaluate our fault detection techniques both in the
context of an applications which utilizes matrix vector mul-
tiplication as a subroutine. The class of applications we have
focused on in this study are sparse linear solvers since they are
very common in computational science and make extensive use
of matrix vector products. Sparse linear systems are commonly
found in many different types of applications including HPC,
Graph-based, and data-mining algorithms.

We consider one of the most common solvers, the Conju-
gate Gradient (CG) method.

CG is a popular solver well suited for very large and
sparse symmetric positive definite problems. It expresses x
as a linear function of n vectors p1, p2, ...pn, with each pair
of vectors conjugate in A (piApj = 0). Although the pi’s can
be computed directly, in practice a small subset of the pi’s
is needed to achieve accuracy within machine precision. As
such, CG approximates the solution x = q1p1 + ... + qnpn
with only a few vectors. The initial approximation is x0; the
residual r0 = b − Ax0, which is the direction of the error
in x0, serves as the first conjugate vector, p0. Subsequent
iterations compute the residual rk and use it to compute the
next conjugate vector pk. To ensure that pk is conjugate to
prior pi’s, pk = rk −

rTk−1−rk−1

rTk−2rk−2
pk−1. The coefficients αk are

computed as rTk rk
pTkApk

. This process is repeated until rk falls
below some threshold.

Solvers are run till a common fixed accuracy target of (1e-
6) which is close to machine precision.

C. Parallel CG

The baseline CG implementation [10] was parallelized
with MPI. The algorithm was parallelized by dividing the
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Name nnz N Sparsity Type
nd3k 3279690 9000 364.41 3D Mesh Problem
bcsstk38 355460 8032 44.2555 Airplane Engine Component
Kuu 340200 7102 47.902 Mathworks Test Matrix
bcsstk16 290378 4884 59.455 Corp. of Engineers Dam
s2rmq4m1 263351 5489 47.978 FEM cylindrical shell
s3rmq4m1 262943 5489 47.9036 FEM cylindrical shell
s1rmq4m1 262411 5489 47.8067 FEM cylindrical shell
bcsstk28 219024 4410 49.6653 Solid Element Model
s2rmt3m1 217681 5489 39.657 FEM cylindrical shell
s3rmt3m1 217669 5489 39.6555 FEM cylindrical shell
s1rmt3m1 217651 5489 39.6522 FEM cylindrical shell
s3rmt3m3 207123 5357 38.664 FEM cylindrical shell
nasa2910 174296 2910 59.8955 Structure from NASA
Muu 170134 7102 23.9558 Mathworks Test Matrix
bcsstk24 159910 3562 44.8933 Winter Sports Arena
aft01 125567 8205 15.3037 Acoustic Radiation
bcsstk15 117816 3948 29.8419 Offshore platform
crystm01 105339 4875 21.608 FEM Vibration
nasa4704 104756 4704 22.2696 Structure from Nasa
ex9 99471 3363 29.5781 Test Matrix from FIDAP
ex15 98671 6867 14.3689 Test Matrix from FIDAP
msc04515 97707 4515 21.6405 Symmetric Test Mat
bcsstk13 83883 2003 41.8787 Fluid Flow
ex13 75628 2568 29.4502 Test Matrix from FIDAP
sts4098 72356 4098 17.6564 Structural Engineering Mat
nasa2146 72250 2146 33.6673 Structure from NASA
bcsstk14 63454 1806 35.1351 Roof of OMNI Coliseum
ex10hs 57308 2548 22.4914 Test Matrix from FIDAP
bcsstk27 56126 1224 45.8546 matrix Buckling Problem
ex3 54840 2410 22.7552 Sym. Powers of Graphs

TABLE III: List of Matrices and Properties

rows of the linear problem across a given set of N nodes,
as shown in Figure 3. All of the internal state within CG
(e.g. search direction p and residual r) were also divided in
a similar manner so that every node contained a fraction of
the entire linear system. By decomposing the algorithm in
this manner, much of the actual CG code did not change, and
instead only the implementations of the matrix vector product
and dot product needed to be modified to account for the
decomposition. Although a given node will only need it’s local
segment of the matrix A to compute the corresponding output
segment, it will also need the entire input state (x). Similarly,
the dot product operation requires that the nodes add the sum
of all smaller local dot products to compute actual dot product.
Therefore both the beginning of the matrix vector product and
end of the dot products represent synchronization points for
the parallel implementation of CG. For the parallel matrix
vector product, this synchronization was implemented in MPI
by gathering the x segments from all of the processes. For the
dot products a sum reduction of all the locally computed dot
products was used to gather the global dot product result.

All our experiments involved full application runs of the
CG solver from the Iterative Method Library [10] that utilizes
SparseLib for linear operations. Our techniques were integrated
into the matrix vector routine in SparseLib. Over 50k runs were
used to get the statistical results shown in Section V. These
runs were executed on LLNL machines (system specs: Sierra:

A

x=

xb

Processor 0

Processor 1

Processor 2

Processor 3

Fig. 3: Example Decomposition of Linear System (y = Ax)
for Parallel CG implementation (N=4)

Intel Xeon 5660, 2.8GHz, 24GB memory per node, Hera:
AMD Quad-Core Opteron 2.3GHz, 32GB Memory per node,
Atlas: AMD Opteron, 2.4GHz, 16GB Memory per node).

D. Other Implementation Details

Due to the nature of partial recomputation and error
localization based approach, there exist several potential pa-
rameters for trading off accuracy and performance within the
technique. This is advantageous for providing an interface
for more application-specific algorithmic corrections. Some of
these parameters include:
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• Threshold (τ ) which is used determine if branches of
tree (segments of output) are pursued for further error
localization can be adjusted according to application
characteristics and requirements.

• Traversal of the tree can be stopped at any point (i.e.
depth=d, which is the fraction of the entire tree’s
height), and correction can be applied to the segment.

• Roll forward correction as opposed to the typical
rollback correction, using the projection of the error
onto the code space, instead of roll back computation
can be used to correct the errors in the identified
segment.

Similar to the approach in [27], we can use decision trees
to learn the best thresholds for the techniques. The first two
are considered in the evaluations of partial recomputation in
Section V, while the third is the focus of future work.

E. Generality

The proposed approach for algorithmic correction applies
to any application which uses linear operations that are associa-
tive and has multiple outputs and/or intermediate states. This
means that many scientific computing applications can benefit
from these approaches since they rely heavily on mathematical
operations at their core. Our proposed techniques rely on
knowledge of the linear operations, not CG. In order to see the
greatest benefits, the techniques do require that the application
have some reuse of data in order to amortize the setup
costs. However, because many HPC applications (PDE, ODE,
Multigrid solvers, etc.) all exhibit this characteristic exactly
and use linear operations iteratively, we expect the technique
to apply to a large class of iterative methods dominated by
linear operations. We also note that iterative solvers can take
up to 80%-99% of the full application runtime for many HPC
and scientific applications.

As another example, consider the FFT application, which
is also a linear transformation similar to MVM. FFT produces
an output vector Xk, such that Xk =

∑N−1
n=0 xne

−i2πkn/N .
Due to linearity, part of the algorithm can also be expressed
as a MVM operation. The matrix (M) used in the product is a
symmetric matrix which represents: Mst = e−i2πst/N . Using
M, the FFT application can then be expressed as X = Mx
Similar to other MVMs, we can utilize a linear code to detect
faults (cT (X) = (cTM)x) and the only precomputation that
is required for localizing errors in the output of FFT (cTM),
is entirely independent of the input (x)

Linear systems and the linear operations that operate on
them are at the core of many non-scientific applications as
well. For example, many emerging applications (Recognition,
Mining, and Synthesis (RMS) applications are increasingly
being dominated by linear operations. RMS applications are
increasingly being dominated by linear operations, such as dot
products and matrix vector products, in order process large
data sets in the most efficient manner. For example, the winner
of the Netflix Prize competition 2009, which focused on
analyzing large data sets of movie preferences and synthesizing
unknown preferences, was primarily a numerical solution using
matrix factorizations at it’s core [21]. Other RMS applications
which process large data sets are also heavily dominated by

linear operations with which the proposed techniques for fault
tolerance in this paper are directly applicable.

V. RESULTS AND ANALYSIS

This section evaluates the performance and scalability of
partial recomputation and error localization in the context of
a common linear solver application, CG (Section IV-B).

We compare the performance of partial recomputation
(PR) with traditional detect and rollback (DR) methods in this
section. The baseline (DR) uses the common ABFT encoding
scheme (a linear code) for detection. We also consider
two instances of partial recomputation, one with full error
localization (binary search depth of d=1) and one instance with
a partial traversal of the localization tree (d = 0.4). We also
consider two baseline detect and rollback (DR) approaches.
One that assumes an ideal (oracle-based) detector and another
with a more realistic detection-based approach that uses the
traditional checksum/threshold comparison (cT y−cTAx ≶ τ ).
In this case, the threshold is chosen to dynamically adjust to
the scale of the input (τ = t‖x‖) [27]. In our experiments,
we used a fixed scaling factor of t = 1 for the dynamically
adjusted threshold. Both baseline implementations (DR) apply
detection and rollback at the level of matrix vector operations.
The input vector of the matrix vector product constitutes the
application checkpoint.

Each technique is applied to an instance of the Parallel CG
algorithm (N=10) on linear problems, defined by the matrices
described in Section IV-B. These solvers are run until a fixed
accuracy of 1e-6.

Figure 4 shows the performance overheads of each tech-
nique across varying fault rates ranging from 1e-8 to 1e-4 on
the axis. The y-axis shows the performance overhead that is
calculated for each matrix by:

(
Timetechi

TimeNONE with zero faults
− 1

)
Timetechi

is the execution time of a given technique
and TimeNONE is execution time of the solver without any
fault tolerance techniques applied. Each dot in the Figure 4
represents the average performance of a particular technique
applied to a specific problem. The overhead is calculated in
relation to runs with no fault tolerance and zero faults (as
discussed in Section IV. Each line represents the mean
overhead across all of the problems at each fault rate. The
first observation from these results is that the detection and
rollback techniques have a high cost (> 200%) as the fault
rate increases. For low fault rates (e.g., between 1e-8 and
1e-7), both the PR and DR based techniques have a similar
mean overhead around 50%, but after a fault rate of 1e-7, the
overheads of DR-based approaches increase to over 100% on
average. This is expected due to the higher cost of recovery
for these traditional approaches. If we observe the PR-based
techniques, however, we see that the mean overheads increase
much more slowly. In fact, PR-based techniques may have
as much as 2x-3x less overhead. In particular, the PR based
approach that only locates faults to within segments located
at 0.4 the total height of the binary search tree, shows only a
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30% average overhead from fault rates ranging from 1e-8 to
1e-4 (as opposed to up to 3x with DR - perfect detection).

If the fault rates increase past a certain point, nearly every
entry of the output will end up being erroneous for the matrices
we chose. For such fault rates, the benefits of PR-based ap-
proaches will diminish versus DR based approaches. However,
for most real world problems, the range of fault rates before
this “saturating point” is hit encompasses even the worst-
case expected operating points for future HPC systems. For
example, with the sparse matrices considered in this evaluation,
the high fault rate scenarios (1e-6 – 1e-4) correspond to only
0.0001% to 0.01% of the output being corrupted. As systems
and problems scale to even larger size (e.g. millions and
billions of nodes), increasingly smaller fraction of output will
be corrupted for any reasonable fault rate and as such the value
of the PR-based approaches will only increase.

Figure 4 also shows that the overheads at any given fault
rate can vary significantly based on the properties of the matrix.
For example, for problems bcsstk16 and nd3k the overheads are
significantly larger for the techniques using practical detection
schemes (PR-based and DR (t=1)). This is because the average
magnitude of entries within these problems is very large,
making it difficult to detect faults with a fixed threshold
(bcsstk16 and nd3k contain average magnitudes of 1e6 and
1e − 4 respectively). Therefore, the detection and fault local-
ization process is less accurate and incurs greater overheads
from false negatives and false positives. Other problems are
simply poorly conditioned and incur high overheads across all
techniques (e.g. nasa2910 has a condition number of 1e64). In
general, the overheads for the different matrices are near their
representative means (±30%).

Each of the solver instances is run under faults until it either
hits the accuracy target or the limit on the maximum number
of iterations (10xnumberofrows). If the solver does not meet
the accuracy target by the maximum number of iterations, it
is considered as a failure. Figure 5 shows the success rate
for each of the techniques over the same set of matrices and
fault rates as Figure 4, on the x-axis. The solvers are run
until convergence and for a maximum number of iterations
(10*dimension of problem). As the fault rate increases, DR
is less likely to make forward progress, and increasingly not
able to meet the accuracy target by the maximum number of
iterations. All the techniques, except DR using a realistic
threshold, complete nearly 80% of the tested matrices. For
solver instances using DR(t = 1), the success rate drops off
quickly going from 1e-8 to 1e-4 due to the high overhead of
rollbacks and the overhead of extra iterations incurred due to
missed faults. Solver instances using DR with perfect detection
show good success rates until a fault rate of 1e-4 where the
high overhead of rollback-based recoveries prohibits the solver
from meeting the accuracy target by the iteration limit.

A. Scalability of Techniques

As the number of nodes in the system increases, we also
expect the benefits of a partial computation based approach
vs traditional detection to increase. In order to evaluate the
scalability of the techniques, we fix the fault rate (1e-6)
and run the same experiments with different numbers of
nodes ({1, 2, 10, 20, 100}). A description of the parallel solver
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Fig. 4: Parallel CG Performance of techniques when scaling
the fault rate, (N=10). At a fault of 1e-4 none of the DR
experiments completed successfully (i.e. reached the accuracy
target in maximum number of iterations).
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Fig. 5: Parallel CG Success Rate of techniques when scaling
the fault rate, (N=10).

implemented with MPI is included in Section IV-C. Fig-
ure 6 illustrates the results of the experiments. Again, dots
correspond to individual experiments and lines corresponding
to the mean overheads. For these experiments, we calculated
the overhead for each matrix by:

(
Timetechi with N nodes and 1e-6 faults
TimeNONE with N nodes and zero faults

− 1

)

We see in Figure 6 that the benefit of PR-based approaches
increases as the number of nodes scales up. At N=10, the
average overhead of DR-based approaches over PR is 50%.
As the number of nodes used in the solver is increased to
100, the overheads of DR over PR are even more pronounced,
increasing over 300% − 350%. These results indicate that
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Fig. 6: Parallel CG Performance of techniques when scaling
up the number of nodes from 1 to 100, with a fixed fault rate
of 1e-6

the rollback recovery mechanism represents a significant bot-
tleneck for traditional parallel fault tolerance mechanisms.
Additionally, it shows that the scalability of these applications
can be greatly approved by utilizing error localization and
partial recomputation to alleviate this bottleneck.

VI. CONCLUSIONS

Future HPC and massively parallel systems will be prone
to errors and severely energy constrained. For these systems, it
will be critical for errors to be efficiently tolerated in order to
ensure good forward progress. The traditional approach for
dealing with errors in massively parallel systems is to roll
the application back to a prior checkpoint whenever a fault is
detected. However, this approach incurs a high cost in transfer-
ring checkpoint data [23] and a large cost in recomputing lost
work. While this may be acceptable in scenarios where faults
are rare, the cost of full-application rollback can be prohibitive
for error prone HPC systems.

We propose a novel approach for algorithmic correction
of faulty application outputs based on error localization and
partial recomputation. The key insight of our approach is that
even under high error scenarios, a large fraction of the output is
correct even if a portion of it is erroneous. Therefore, instead of
simply rolling back to the most recent checkpoint and repeating
the entire segment of computation, our approach identifies and
corrects the actual subsegments of the output which are faulty.
By alleviating a key bottleneck associated with recovery, the
parallel applications employing our fault tolerance techniques
are able to scale significantly better. We explore this concept
in the context of numerical linear algebra – the matrix-
vector multiplication (MVM) operation as well as iterative
linear solvers, in high error scenarios on parallel systems.
Numerical linear algebra dominates computation in many HPC
and RMS applications. Our experiments show that while tradi-
tional detection/rollback has 2x-3x overhead under high fault
rates, partial recomputation is 2x cheaper while maintaining
similar accuracy as ideal detection/rollback approaches. With

more realistic detection schemes using dynamic thresholds,
partial recomputation-based approaches are significantly more
efficient (CG converges 70% more often and performance
overheads 2x-3x smaller). For a fixed moderate fault rate,
partial recomputation-based approaches with complete error
localization reduce the overhead by up to 32% on average
when scaled up to 10 nodes and 320% when scaled up to 100
nodes. Similarly, with the relaxed error localization routine the
overhead is reduced by up to 77% at 10 nodes and up to 390%
at 100 nodes.

Our results demonstrate the value of research into partial
recomputation in the context of a wider range of algorithms.
Since this approach is significantly more efficient than whole-
application recomputation and also significantly simpler than
algorithmic correction techniques, we expect that this line
of work will be extremely productive in ensuring cheap and
effective resilience on future massively parallel systems.
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